Math, asked by siddusudheer781, 6 months ago

A sum of rupees 3000 is to be given in the form of 63 prizes.If the prize money is either rupees 100 or rupees 25.Find the number of prizes of each type

Answers

Answered by adarshb800
1

Answer:

❤hope it will help u❤

brainliest pls...

Step-by-step explanation:

Let the number of prizes of money 100 be x, and the number of prizes of cost 25 be y ;

x+y = 63

y = 63-x -------(1)

100x+25y = 3000

4x+y = 120

y = 120-4x ------(2)

63-x = 120-4x

4x-x = 120-63

3x = 57

x = 19

y = 63-x = 63-19

y = 44

Hence the number of prizes of cost 100 each are 19 while other type of prizes are 44

Answered by samimpapa354
0

Answer:

\underline\mathfrak{Given:-}

\: \: \: \: \: \: \: Total \: \: prize \: \: = \: \: {63}

\: \: \: \: \: \: \: Cast \: \: of \: \: all \: \: prize \: \: = \: \: {3000}

\underline\mathfrak{To \: \: Find:-}

\: \: \: \: \: The \: \: number \: \: of \: \: prize?

\underline\mathfrak{Solutions:-}

\: \: \: \: \: \: \: Let \: \: the \: \: number \: \: of \: \: {100} \: rupees \: \: prize \: \: be \: \: x

\: \: \: \: \: \: \: Let \: \: the \: \: number \: \: of \: \: {25} \: rupees \: \: prize \: \: be \: \: y

\: \: \: \: \: \therefore Total \: \: cast \: \: of \: \: prize \: \: \leadsto \: \: {3000}.

\: \: \: \: \: \leadsto {100x} \: + \: {25y} \: \: = \: \: {3000}

\: \: \: \: \: divide \: \: both \: \: side \: \: by \: \: {25} \: \: we \: \: get.

\: \: \: \: \: \leadsto {4x} \: + \: {y} \: \: = \: \: {120} \: \: \: \: \:..{(1)}.

\: \: \: \: \: And \: \: number \: \: of \: \: prize \: \: of \: \: {100} \: \: and \: \: {25} \: \: rupees

\: \: \: \: \: \leadsto {x} \: + \: {y} \: \: = \: \: {63} \: \: \: \: \:..{(2)}.

\: \: \: \: \: From \: \: Eq. \: \: {(1)} \: \: and \: \: {(2)}

\: \: \: \: \: \leadsto {4x} \: + \: {y} \: \: - \: \: {x} \: \: - \: \: {y} \: \: = \: \: {120} \: \: - \: \: {63}

\: \: \: \: \: \leadsto {3x} \: \: = \: \: {57}

\: \: \: \: \: \leadsto {x} \: \: = \: \: {19}

\: \: \: \: \: putting \: \: value \: \: of \: \: x \: \: in \: \: Eq. \: {(1)}.

\: \: \: \: \: \leadsto {4} \: + \: {y} \: \: = \: \: {120}

\: \: \: \: \: \leadsto {4x} \: \times \: {19} \: + \: {y} \: \: = \: \: {120}

\: \: \: \: \: \leadsto {76} \: + \: {y} \: \: = \: \: {120}

\: \: \: \: \: \leadsto {y} \: \: = \: \: {120} \: - \: {76}

\: \: \: \: \: \leadsto {y} \: \: = \: \: {54}

\: \: \: \: \: The \: \: numbers \: \: {100} \: \: rupees \: \: prize \: \: \leadsto \: \: {19}

\: \: \: \: \: The \: \: numbers \: \: {25} \: \: rupees \: \: prize \: \: \leadsto \: \: {54}

______________________________

Similar questions