Math, asked by MissHotBabe, 1 month ago

✠ ★ A survey regarding the heights (in cm) of 51 girls of Class X of a school was conducted and the following data was obtained :-


\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \small\boxed{\begin{array}{c |c} \tt{Height\ (in\ cm)} & \tt{Number\ of\ girls} \\ \dfrac{\qquad\qquad}{ \sf Less\ than\ 140} &\dfrac{\qquad\qquad}{ \sf 8} & \\ \dfrac{\qquad\qquad}{ \sf Less\ than\ 145} &\dfrac{\qquad\qquad}{ \sf 81} & \\ \dfrac{\qquad\qquad}{ \sf Less\ than\ 160} &\dfrac{\qquad\qquad}{ \sf 209} & \\ \dfrac{\qquad\qquad}{ \sf Less\ than\ 137} &\dfrac{\qquad\qquad}{ \sf 40} & \\ \dfrac{\qquad\qquad}{ \sf Less\ than\ 180} &\dfrac{\qquad\qquad}{ \sf 66} & \\ \dfrac{\qquad\qquad}{ \sf Less\ than\ 145} &\dfrac{\qquad\qquad}{ \sf 51} &\end{array}} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}



​ Find the median height.​

Answers

Answered by Anonymous
21

N = 51 \\⇒ \frac{N}{2} = \frac{51}{2} \\⇒25.5

As 29 is just greater than 25.5, therefore median class is 145 - 150.

Median = l +  \frac{\frac{n}{2} +C}{f}  \times h

Here, l = lower limit of median class = 145

C = C.F. of the class preceding the median class = 11

h = higher limit - lower limit = 150 − 145 = 5

f = frequency of median class = 18

∴median = 145 + \frac{25.5 - 11}{15} × 5 \\ = 145+4.03 \\ = 149.03.

Answered by MrRap
153

Solution:-

To calculate the median height, we need to find the class intervals and their corresponding frequencies.

Table:-

 {\large  {\boxed{\begin{array}{ccc}  \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c|c} \underline {{\sf{ \:  \: Class  \: Intervals \:  \: }}}& \underline{{\sf{\:\:Frequency\:\:}}}&\underline {{\sf{ \:  \:Cumulative  \: Frequency  \:  \: }}}\\  {{ \footnotesize\sf{Below \:  140}}} &{{\footnotesize\sf{4}}}& {\footnotesize\sf{\:\:4 \:\:}}\\{\footnotesize\sf{140 - 145}}&{\footnotesize\sf{\:\:7\:\:}} &{{\footnotesize\sf{11}}}\\ {{\footnotesize\sf{145 - 150}}}& {\footnotesize\sf{\:\:18 \:\:}}& {{\footnotesize\sf{29}}}\\ {{\footnotesize\sf{150 - 155}}}& {\footnotesize\sf{\:\:11\:\:}}& {{\footnotesize\sf{40}}}\\ {\footnotesize\sf{155 - 160}}& {\footnotesize\sf{\:\:6 \:\:}}&{{\footnotesize\sf{46}}} \\ {\footnotesize\sf{160 - 165}}& {\footnotesize\sf{\:\:5 \:\:}}&{{\footnotesize\sf{51}}}\end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{array}}}}

\rm{n = 54.  \: So, \dfrac{n}{2} = \cancel  \dfrac{51}{2} = 25.5}

This Observation lies in the class 145 - 150

l  =  \rm{Lower  \: limit \:  of \:  median  \: class = 145}

h =  \rm{The  \: Class  \: Size =5}

 \rm{cf =Cumulative \:  frequency \:  of  \: the \: class=145-150=11}

f =  \rm{Frequency  \: of \:  the  \: median  \: class = 18}\\\\

 \text{median}={ l +  \dfrac{ \dfrac{n}{2}  - cf}{f} \times h}

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \implies{ 145+   \left(\begin{array} {cccc} \\ \dfrac{25.5 - 11 }{18}  \\  \\ \end{array}\right) \times 5}\\\\

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies { 145+  \dfrac{14.5 }{18} \times 5}\\\\

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies { 145+  \dfrac{72.5 }{18} }\\\\

 \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies{ 149.03}\\\\

The median height of the girl is 149.03 cm

This means that the height of about 50% of the girls is less than this height, and 50% are taller than this height.

Similar questions