Physics, asked by Bedantika, 7 months ago

A system of ideal gas undergoes isothermal expansion from state (P,V) to a state
(P1, 2V). Find P1 in terms of P. Also find the amount of work done in this process.

Answers

Answered by shadowsabers03
1

In the case of isothermal expansion,

\sf{\longrightarrow PV=K\quad\quad\dots(1)}

i.e., it is a constant. Therefore,

\sf{\longrightarrow PV=P_1(2V)}

\sf{\longrightarrow\underline{\underline{P_1=\dfrac{P}{2}}}}

The work done during this process will be,

\displaystyle\sf{\longrightarrow W=\int\limits_V^{2V}P\ dV}

From (1) we can write P as,

\sf{\longrightarrow P=KV^{-1}}

Then,

\displaystyle\sf{\longrightarrow W=\int\limits_V^{2V}KV^{-1}\ dV}

\displaystyle\sf{\longrightarrow W=K\Big[\ln V\Big]_V^{2V}}

\displaystyle\sf{\longrightarrow W=PV(\ln 2V-\ln V)}

\displaystyle\sf{\longrightarrow W=PV\ln\left(\dfrac{2V}{V}\right)}

\displaystyle\sf{\longrightarrow\underline{\underline{W=PV\ln2}}}

Or,

\displaystyle\sf{\longrightarrow\underline{\underline{W=2.303PV\log2}}}

\displaystyle\sf{\longrightarrow W=2.303PV\times0.301}

\displaystyle\sf{\longrightarrow\underline{\underline{W=0.693PV}}}

Similar questions