Math, asked by vineelav7587, 1 year ago

A=tan inverse of X root 3 by 2k-x and B=tan inverse of 2x-k by k root 3 then A-B =

Answers

Answered by amitnrw
1

A - B = Tan⁻¹( 1/ √3) = 30°  if A = Tan⁻¹( x√3 / (2k - x) ) & B = Tan⁻¹( (2x - k) / k√3 )

Step-by-step explanation:

A = Tan⁻¹( x√3 / (2k - x) )

=> TanA =  x√3 / (2k - x)

B = Tan⁻¹( (2x - k) / k√3 )

=> TanB = (2x - k) / k√3

Tan (A - B)  = (Tan A - TanB) /(1 + TanATanB)

=> Tan (A - B)   =  (  x√3 / (2k - x)  - (2x - k) / k√3 ) / (1  +   (x√3 / (2k - x))*(2x - k) / k√3 )

=> Tan (A - B)   =  (3kx  - (2x - k)(2k - x) ) / (  (2k - x) k√3   + x√3(2x - k) )

=>  Tan (A - B)   =  (3kx  - 4kx  + 2k² + 2x² - kx) / ( 2√3k² - xk√3 + 2√3k² - xk√3)

=> Tan (A - B)   =  (2k² + 2x² - 2kx) / ( 2√3k² - 2xk√3 + 2√3x²)

=> Tan (A - B)   =  (k² + x² - kx) / (√3k² - xk√3 + √3x²)

=> Tan (A - B)   =  (k² + x² - kx) / (√3(k² + x²  - kx))

=>  Tan (A - B)   =   1/√3

=> A - B = Tan⁻¹( 1/ √3)

=> A - B = 30°

Learn More

If tan(a+b)=1 and tan(a-b)=1/√3, then find the value of a and b.

https://brainly.in/question/8662005

Similar questions