Physics, asked by arijit2021, 11 months ago

A tangential force of 20 N is applied on a cylinder of mass
4 kg and moment of inertia 0.02 kg m about its own axis ir
the cylinder rolls without slipping, then linear acceleration
of its centre of mass will be
(A) 6,7m
(b) 10 m/s
(c) 3.3m's
(d) None of these​

Answers

Answered by Anonymous
7

Given:

Force = 20 N

Mass = 4 kg

Moment of Inertia = 0.02 kg m²

To find:

The linear acceleration of its center of mass.

Solution:

  • We know that a = rα
  • Also, as per the question, 20 + f = 4a
  • And, 20 x 0.1 - f x 0.1 = 0.02α
  • Upon solving the above equations, we get,

        20+f = 4α                    eq(1)

        2-0.1f = 0.02 a/r

        20-f = (0.2 a) / 0.1         eq(2)

  • On solving eq(1) and eq(2), we get,

        a = 6.7 m/s²

  • Thus, the linear acceleration of its centre of mass will be 6.7 m/s².
Answered by sanjeevk28012
2

Given :

Tangential Force = F = 20 N

The mass of cylinder = M = 4 kg

Moment of Inertia = I = 0.02 kg-m

To Find :

The linear acceleration of its center of mass

Solution :

Let The linear acceleration = a  m/s²

Moment of Inertia of Cylinder = I = \dfrac{Mr^{2} }{2}

Or, 2 I = M × r²

Or, 2 × 0.02 = 4 × r²

or, r = 0.1 m

 T = I a

So, ( F - f ) r = \dfrac{Mr^{2} }{2} × a

Or, 2 ( F - f ) r = Mr² × a

∴   a  = \dfrac{2 ( F - f ) r}{Mr^{2} }            ...........1

Again

 acceleration of its center of mass = \dfrac{ ( F + f ) }{M}            ..........2

From eq1  and eq 2

\dfrac{2 ( F - f ) r}{Mr^{2} } = \dfrac{ ( F + f ) }{M}

Or,  2 ( F - f ) = r ( F + f )

Or, 2  ( F - f ) = 0.1 × ( F + f )

Or, 20 F - 20 f = F  + f

Or,  19 F = 21 f

i.e       F = \dfrac{21}{19} f

Or, f = \dfrac{19F}{21}

 acceleration of its center of mass = \dfrac{ ( F + \dfrac{19F}{21}  ) }{M}

                                                             = \dfrac{40 F}{21 M}

                                                             = \dfrac{40\times 20}{21\times 4}

                                                             = 9.52 m/s² = 10  m/s²

Hence, The acceleration of its center of mass is  10  m/s²   Answer

Similar questions