Math, asked by nagaraviprakash, 1 year ago

A tap is hemisphere over a cone the common radius is 7 cm, height of the conical part is 24cm find the volume of the top

Answers

Answered by TPS
46
A top has a conical bottom part and hemispherical upper part.

Radius of hemisphere, r = 7cm

Radius of conical part, r = 7cm

height of conical part , h = 24 cm

Volume of top = volume of cone + volume of hemisphere

\Rightarrow V =  \frac{1}{3} \pi {r}^{2} h +  \frac{2}{3} \pi {r}^{3}  \\  \\ \Rightarrow V =  \frac{1}{3} \pi {r}^{2} (h + 2r) \\  \\ \Rightarrow V =  \frac{1}{3}  \times  \frac{22}{7}  \times  {7}^{2} \times (24 + 2 \times 7) \\  \\ \Rightarrow V =  \frac{22 \times 7}{3} \times 38 \\  \\ \Rightarrow V = 1950.67 \:  {cm}^{2}
Answered by BrainlyFlash156
25

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ĄNsWeR࿐}}}

A top has a conical bottom part and hemispherical upper part.

Radius of hemisphere, r = 7cm

Radius of conical part, r = 7cm

height of conical part , h = 24 cm

Volume of top = volume of cone + volume of hemisphere

\Rightarrow V =  \frac{1}{3} \pi {r}^{2} h +  \frac{2}{3} \pi {r}^{3}  \\  \\ \Rightarrow V =  \frac{1}{3} \pi {r}^{2} (h + 2r) \\  \\ \Rightarrow V =  \frac{1}{3}  \times  \frac{22}{7}  \times  {7}^{2} \times (24 + 2 \times 7) \\  \\ \Rightarrow V =  \frac{22 \times 7}{3} \times 38 \\  \\ \Rightarrow V = 1950.67 \:  {cm}^{2}

HOPE SO IT WILL HELP...........

Similar questions