Math, asked by rishi9367, 7 months ago

A telegraph post is bent at a point above the ground due to storm. Its top just meets the ground at a
distance of 8 root 3 metres from its foot and makes an angle of 30 degree. Calculate at what height the post is bent
and what is the height of the post.

Answers

Answered by TheVenomGirl
19

AnswEr :

  • Height of Post Bent is 16 m.

  • Height of the Post is 24 m.

Diagram :

\setlength{\unitlength}{1.6cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,3.9){\large\sf{D}}\put(7.7,2.9){\large\sf{B}}\put(7.7,1){\large\sf{C}}\put(10.6,1){\large\sf{A}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){3}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(8.4,0.7){\sf{\large{8 \sqrt{3}$}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\qbezier(9.8,1)(9.7,1.25)(10,1.4)\put(9.4,1.2){\sf\large{30^{\circ}$}}\end{picture}

Here,

  • AB = Bent part

  • AC = 8√3 m

Let us consider that the height of the Post is AB + BC.

In ∆ABC,

\longrightarrow\sf \: \tan ({30}^{ \circ}) =  \dfrac{h}{ 8\sqrt{3}  } \\  \\

\longrightarrow\sf \:  \dfrac{1}{ \sqrt{3} }  =  \dfrac{h}{ 8\sqrt{3}  } \\  \\

\longrightarrow\sf \:  h =  \dfrac{ 8\sqrt{3} }{ \sqrt{3} } \\  \\

\longrightarrow \large\sf \:   \blue{h =  8 \: m} \\  \\

Now,

Apply Pythagoras theorem,

\longrightarrow \sf \: {AB}^{2}  =   {BC}^{2}   +  {AC}^{2}  \\  \\

\longrightarrow \sf \: {AB}^{2}  =   {(8)}^{2}   +  { (8\sqrt{3} )}^{2}  \\  \\

\longrightarrow \sf \: {AB}^{2}  =   64 +  192  \\  \\

\longrightarrow \sf \: {AB}^{2}  =   256 \\  \\

\longrightarrow \sf \large \:  \purple{{AB} =   16 \: m} \\  \\

We know that,

\longrightarrow Height of the Post = AB + BC

\longrightarrow Height of the Post = 16 + 8

\therefore Height of the Post = 24 m

  • Height of Post bent = AB = 16 m

Hence solved!

Similar questions