Math, asked by harshit123446, 3 months ago

A tent is in the shape of a right circular cylinder
upto a height of 3 m and conical above it. The total
height of the tent is 13.5 m above the ground.
Calculate the cost of painting the inner side of the
tent at the rate of 2 per m’, if the radius of the base
is 14 m. (jisko aata h whi answer kre nhi aata h th chup betha answer glt hua na tumko pitenga) ​

Answers

Answered by sethrollins13
77

Given :

  • Height of Cylinder = 3 m.
  • Total Height of Tent = 13.5 m .
  • Radius of the base = 14 m .

To Find :

  • Cost of painting the inner side of the
  • tent at the rate of 2 per m .

Solution :

Height of cone = 13.5-3 = 10.5 m .

Firstly we'll find the C.S.A of Cylinder :

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cylinder=2\pi{rh}}

Putting Values :

\longmapsto\tt{2\times\dfrac{22}{{\cancel{7}}}\times{{\cancel{14}}}\times{3}}

\longmapsto\tt{44\times{2}\times{3}}

\longmapsto\tt\bf{264\:{m}^{2}}

Now , We'll calculate the Slant Height of Cone :

\longmapsto\tt{{l}^{2}={(r)}^{2}+{(h)}^{2}}

\longmapsto\tt{{l}^{2}={(10.5)}^{2}+{(14)}^{2}}

\longmapsto\tt{{l}^{2}=110.25+196}

\longmapsto\tt{l=\sqrt{306.25}}

\longmapsto\tt\bf{l=17.5\:m}

For C.S.A of Cone :

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cone=\pi{rl}}

Putting Values :

\longmapsto\tt{\dfrac{22}{{\cancel{7}}}\times{{\cancel{14}}}\times{17.5}}

\longmapsto\tt{44\times{17.5}}

\longmapsto\tt\bf{770\:{m}^{2}}

Total Area of Tent :

\longmapsto\tt{264+770}

\longmapsto\tt\bf{1034\:{m}^{2}}

Cost of painting it at the rate of 2 per m :

\longmapsto\tt{1034\times{2}}

\longmapsto\tt\bf{Rs.2068}

Answered by Anonymous
72

{\large{\pmb{\sf{\underline{RequirEd \; Solution...}}}}}

{\bigstar\:{\underline{\pmb{\sf{\purple{Understanding \: the \: question:}}}}}}

This question says that a tent is in the shape of a right circular cylinder upto a height of 3 m and conical above it. The total height of the tent is 13.5 m above the ground. Calculate the cost of painting the inner side of the tent at the rate of 2 per m if the radius of the base is 14 metres. Let us solve this question!

{\bigstar\:{\underline{\pmb{\sf{\purple{Given \: that:}}}}}}

A tent is in the shape of a right circular cylinder upto a height of 3 metres and conical above it.

The total height of the tent is 13.5 metres above the ground.

The radius of the base is 14 metres

{\bigstar\:{\underline{\pmb{\sf{\purple{To \: find:}}}}}}

The tent at the rate of 2 per metres

{\bigstar\:{\underline{\pmb{\sf{\purple{Solution:}}}}}}

The tent at the rate of 2 per metres = 2068 rs.

{\bigstar\:{\underline{\pmb{\sf{\purple{Using \: concepts:}}}}}}

Formula to find out the curved surface area of the cylinder.

Formula to find out the curved surface area of the cone.

Formula to find out the slant height of the cone.

Formula to find total area of the tent

Formula to find the rate.

{\bigstar\:{\underline{\pmb{\sf{\purple{Using \: formulas:}}}}}}

{\small{\underline{\boxed{\sf{\star \: CSA \: of \: cylinder \: = 2 \pi rh}}}}}

{\small{\underline{\boxed{\sf{\star \: CSA \: of \: cone \: = \pi rl}}}}}

{\small{\underline{\boxed{\sf{\star \: Slant \: height \: of \: cone \: = (l)^{2} \: = (r)^{2} + (h)^{2}}}}}}

{\small{\underline{\boxed{\sf{\star \: Total \: area \: =  CSA \: of \: cylinder \: + CSA \: of \: cone}}}}}

{\small{\underline{\boxed{\sf{\star \: Rate \: = Given \: amount \times Total \: area}}}}}

{\bigstar\:{\underline{\pmb{\sf{\purple{Full \: Solution:}}}}}}

~ Firstly by using the formula of find CSA of cylinder let us find CSA!

{\small{\underline{\boxed{\sf{CSA \: of \: cylinder \: = 2 \pi rh}}}}} \\ \\ :\implies \sf CSA \: of \: cylinder \: = 2 \pi rh \\ \\ :\implies \sf CSA \: of \: cylinder \: = 2 \times 3.14 \times 14 \times 3 \\ \\ :\implies \sf CSA \: of \: cylinder \: = 6.27 \times 14 \times 3 \\ \\ :\implies \sf CSA \: of \: cylinder \: = 6.27 \times 42 \\ \\ :\implies \sf CSA \: of \: cylinder \: = 264 \: m^{2}

Henceforth, CSA of cylinder = 264m²

~ Now by using the formula of find out the slant height of cone let us find length.

{\small{\underline{\boxed{\sf{Slant \: height \: of \: cone \: = (l)^{2} \: = (r)^{2} + (h)^{2}}}}}} \\ \\ :\implies \sf Slant \: height \: of \: cone \: = (l)^{2} \: = (r)^{2} + (h)^{2} \\ \\ :\implies \sf (l)^{2} \: = (r)^{2} + (h)^{2} \\ \\ :\implies \sf (l)^{2} \: = (10.5)^{2} + (14)^{2} \\ \\ :\implies \sf (l)^{2} \: = 110.25 + 196 \\ \\ :\implies \sf (l)^{2} \: = 306.25 \\ \\ :\implies \sf l \: = \sqrt{306.25} \\ \\ :\implies \sf l \: = 17.5 \: metres

  • *Note: Don't be confused that how height is came as 10.5 as it's 13.5 It came like as because one more height is given as 3. So, 13.5-3 = 10.5 metres.

Henceforth, length = 17.5 metres

~ Now by using the formula to find CSA of cone let's find CSA.

{\small{\underline{\boxed{\sf{CSA \: of \: cone \: = \pi rl}}}}} \\ \\ :\implies \sf CSA \: of \: cone \: = \pi rl \\ \\ :\implies \sf CSA \: of \: cone \: = 3.14 \times 14 \times 17.5 \\ \\ :\implies \sf 770 \: metres^{2}

Henceforth, 770 = CSA here

~ Now let's find out the total area of tent.

{\small{\underline{\boxed{\sf{Total \: area \: =  CSA \: of \: cylinder \: + CSA \: of \: cone}}}}} \\ \\ :\implies \sf Total \: area \: =  CSA \: of \: cylinder \: + CSA \: of \: cone \\ \\ :\implies \sf Total \: area \: = 264 + 770 \\ \\ :\implies \sf Total \: area \: = 1034 \: m^{2}

Henceforth, 1034 = Total area.

~ Now at last let us find the rate.

{\small{\underline{\boxed{\sf{Rate \: = Given \: amount \times Total \: area}}}}} \\ \\ :\implies \sf Rate \: = Given \: amount \times Total \: area \\ \\ :\implies \sf Rate \: = 2 \times 1034 \\ \\ :\implies \sf Rate \: = 2068 \: Rupees

Therefore, rate is 2068 Rs.

Attachments:
Similar questions