Math, asked by zainab7739, 9 months ago

A tent of height 77 dm is in the form of a right circular cylinder of diameter 36m and 44 dm surmounted
by a right circular cone. Find the cost of the canvas at Rs.3.50 per m2
?

Answers

Answered by ayushop22
2

Answer:

please mark me as brainlist

Step-by-step explanation:

The cost of the canvas at Rs.350m².

Solution:

⚫Height of tent= 77dm

In metre= 7.7m

⚫Diameter of the cylinder=36m

In radius = 36/2

=) 18m

⚫Height of cylinder= 44dm

In metre= 4.4m

⚫Height of cone= (7.7 -4.4)m

=) 3.3m

Curved surface area of cylinder portion of the tent;

=) 2πrh

\begin{gathered}= > 2 \times ( \frac{22}{7} ) \times 18 \times 4.4 \\ \\ = > \frac{44}{7} \times 79.2 \\ \\ = > \frac{3484.8}{7} \\ \\ = >497.82 {m}^{2}\end{gathered}

=>2×(

7

22

)×18×4.4

=>

7

44

×79.2

=>

7

3484.8

=>497.82m

2

Curved surface area of conical tent=πrl

Slant Height of cone:

\begin{gathered}= > \sqrt{(3.3) {}^{2} + 18 {}^{2} } \\ \\ = > \sqrt{10.89 + 324} \\ \\ = > \sqrt{334.89} \\ \\ = > 18.3m\end{gathered}

=>

(3.3)

2

+18

2

=>

10.89+324

=>

334.89

=>18.3m

Curved surface area of cone:

\begin{gathered}= > \frac{22}{7} \times 18 \times 18.3 \\ \\ = > \frac{7246.8}{7} \\ \\ = > 1035.26{m}^{2}\end{gathered}

=>

7

22

×18×18.3

=>

7

7246.8

=>1035.26m

2

Total Surface area of the tent:

=) 497.83m² + 1035.26m²

=) 1533.09m²

Total cost of canvas:

=) Rs.3.50 × 1533.09

=) Rs.5365.82

The cost of canvas is Rs.5365.82.

Hope it helps ☺️

Answered by Anonymous
27

Answer :

➥ The cost of canvas = Rs. 5365.82

Given :

➤ Height of the tent (h) = 77 dm

➤ Diameter of the cylinder (d) = 36 dm

➤ Height of cylinder (h) = 44 dm

To Find :

➤ The cost of canvas at ₹3.50 per m² = ?

Solution :

◈ Height of the tent = 77 dm = 7.7 m

◈ Radius of the cylinder = 36/2 = 8

◈ Height of the cylinder = 44 dm = 4.4 m

Height of the cone = 7.7 - 4.4

Height of the cone = 3.3 m

Curved surface area of the cylinder = 2πrl

 \tt{: \implies C.S.A = 2  \times  \dfrac{22}{7}  \times 18 \times 4.4}

\tt{: \implies C.S.A =  \dfrac{44}{7} \times 18 \times 4.4 }

\tt{: \implies C.S.A =  \dfrac{44}{7}  \times 79.2}

\tt{: \implies C.S.A =   \cancel{\dfrac{3784.8}{7} }}

\tt{: \implies  \purple{ \underline{ \overline{ \boxed{ \green{ \bf{ \:  \: C.S.A = 497.82 \:  \: }}}}}}}

Curved surface area of cone = πrl

Slant height of cone

 \tt{:\implies  \sqrt{ {r}^{2} +  {h}^{2}  } }

 \tt{: \implies  \sqrt{ {(18)}^{2}  +  {(3.3)}^{2} } }

 \tt{: \implies  \sqrt{324 + 10.89} }

 \tt{: \implies  \sqrt{334.89} }

 \bf{: \implies 18.3 \: m}

Curved surface area of cone = πrl

 \tt{: \implies C.S.A =  \dfrac{22}{7}  \times 18 \times 18.3}

 \tt{: \implies C.S.A =    \cancel{\dfrac{7246.8}{7}} }

\tt{: \implies  \purple{ \underline{ \overline{ \boxed{ \green{ \bf{ \:  \: C.S.A  = 1035.76\:  \: }}}}}}}

Now ,

Total surface area = Curved surface area of cylinder + Curved surface area of cone

 \tt{: \implies T.S.A = 497.83 + 1035.76}

\tt{: \implies  \purple{ \underline{ \overline{ \boxed{ \green{ \bf{ \:  \: T.S.A  =1533.09 \:  {m}^{2} \:  \: }}}}}}}

The cost of the canvas at Rs.3.50 per m²

 \tt{: \implies 1533.09 \times 3.50}

\tt{: \implies  \green{ \underline{ \overline{ \boxed{ \purple{ \bf{ \:  \: Rs. \: 5365.82\:  \: }}}}}}}

Hence, the cost of the canvas at Rs.3.50 per m² is Rs. 5365.82.

Attachments:
Similar questions