Computer Science, asked by akshatsingh29nov2010, 11 months ago

a term used to denote upgrade in technology including both
hardware and software​

Answers

Answered by mikeygaming76
2

The computer technology that allows us to develop three-dimensional virtual environments (VEs) consists of both hardware and software. The current popular, technical, and scientific interest in VEs is inspired, in large part, by the advent and availability of increasingly powerful and affordable visually oriented, interactive, graphical display systems and techniques. Graphical image generation and display capabilities that were not previously widely available are now found on the desktops of many professionals and are finding their way into the home. The greater affordability and availability of these systems, coupled with more capable, single-person-oriented viewing and control devices (e.g., head-mounted displays and hand-controllers) and an increased orientation toward real-time interaction, have made these systems both more capable of being individualized and more appealing to individuals.

Limiting VE technology to primarily visual interactions, however, simply defines the technology as a more personal and affordable variant of classical military and commercial graphical simulation technology. A much more interesting, and potentially useful, way to view VEs is as a significant subset of multimodal user interfaces. Multimodal user interfaces are simply human-machine interfaces that actively or purposefully use interaction and display techniques in multiple sensory modalities (e.g., visual, haptic, and auditory). In this sense, VEs can be viewed as multimodal user interfaces that are interactive and spatially oriented. The human-machine interface hardware that includes visual and auditory displays as well as tracking and haptic interface devices is covered in Chapters

Page 248

Suggested Citation:"8 Computer Hardware and Software for the Generation of Virtual Environments." National Research Council. 1995. Virtual Reality: Scientific and Technological Challenges. Washington, DC: The National Academies Press. doi: 10.17226/4761.×

Add a note to your bookmark

3, 4, and 5. In this chapter, we focus on the computer technology for the generation of VEs.

One possible organization of the computer technology for VEs is to decompose it into functional blocks. In Figure 8-1, three distinct classes of blocks are shown: (1) rendering hardware and software for driving modality-specific display devices; (2) hardware and software for modality-specific aspects of models and the generation of corresponding display representations; (3) the core hardware and software in which modality-independent aspects of models as well as consistency and registration among multimodal models are taken into consideration. Beginning from left to right, human sensorimotor systems, such as eyes, ears, touch, and speech, are connected to the computer through human-machine interface devices. These devices generate output to, or receive input from, the human as a function of sensory modal drivers or renderers. The auditory display driver, for example, generates an appropriate waveform based on an acoustic simulation of the VE. To generate the sensory output, a computer must simulate the VE for that particular sensory mode. For example, a haptic display may require a physical simulation that includes

FIGURE 8-1 Organization of the computer technology for virtual reality.

Similar questions