Math, asked by niranjandhavale2604, 5 months ago

a
( \frac{ {a}^{m} }{ {a}^{ - n} } ) {}^{m - n} \times ( \frac{ {a}^{n} }{ {a}^{ - p} }) ^{n - p} \times ( \frac{ {a}^{p} }{ {a}^{ - m} }) {}^{p - m} = 1

Answers

Answered by MagicalBeast
2

To prove :

 \sf \:  \bigg( \dfrac{ {a}^{m} }{ {a}^{ - n} }  \bigg)^{(m - n)}  \:  \times  \: \bigg( \dfrac{ {a}^{n} }{ {a}^{ - p} }  \bigg)^{(n - p)} \:  \times  \: \bigg( \dfrac{ {a}^{p} }{ {a}^{ -m} }  \bigg)^{(p - m )} \:  = 1

Identity used :

 \bullet \:  \: \sf\dfrac{a^x}{a^y}  \: =  \: a^{(x - y)}\\\\\bullet\:\:\sf{(a^x)^y \:  = \:  a^{xy}}\\\\\bullet\:\:\sf(a^x) \times (a^y)  \: =  \: a^{x + y} \\  \\  \sf \bullet \:  \:   \:  {a}^{0}  =  \: 1 \\  \\   \sf \bullet \:  \: ( {x}^{2}  -  {y}^{2} ) = (x + y)(x - y)

Solution :

\sf \:  \bigg( \dfrac{ {a}^{m} }{ {a}^{ - n} }  \bigg)^{(m - n)}  \:  \times  \: \bigg( \dfrac{ {a}^{n} }{ {a}^{ - p} }  \bigg)^{(n - p)} \:  \times  \: \bigg( \dfrac{ {a}^{p} }{ {a}^{ -m} }  \bigg)^{(p - m )} \:  = 1 \\  \\ \sf Now, \:\:\\  \\  \sf \implies \: LHS \:  \: = \:   \bigg(  {a}^{m - ( - n)}  \:  \bigg)^{(m - n)}  \:  \times  \:  \bigg(  \:  {a}^{n - ( - p)} \:   \bigg)^{(n - p)} \:  \times  \:  \bigg(  \:  {a}^{p - ( - m)} \:   \bigg)^{(p - m )} \:   \\  \\  \\  \sf \implies \:  LHS \:  \: = \:   \bigg(  {a}^{(m  + n)}  \:  \bigg)^{(m - n)}  \:  \times  \:  \bigg(  \:  {a}^{(n  + p)} \:   \bigg)^{(n - p)} \:  \times  \:  \bigg(  \:  {a}^{(p + m)} \:   \bigg)^{(p - m )} \:  \\  \\ \sf \implies \: LHS \:  \: =  \:  {a}^{(m + n)(m - n)}   \:  \times  \:  {a}^{( n + p)(n - p)} \:  \times  \:  {a}^{(p + m)(p - m)} \\  \\ \sf \implies \: \:  LHS \:  \: = \:  \:  {a}^{( {m}^{2} -  {n}^{2} ) }  \:  \times  \: {a}^{( {n}^{2} -  {p}^{2} ) }    \:  \times  \: {a}^{( {p}^{2} -  {m}^{2} ) }    \\  \\  \sf \implies \: \:  LHS \:  \: = \:  \: {a}^{  \: [ \: ( {m}^{2} -  {n}^{2} )  \:  +  \: ( {n}^{2} -  {p}^{2} ) \:  +  \:( {p}^{2} -  {m}^{2} ) \:  \:   ] }  \:   \\  \\  \sf \implies \: \:  LHS \:  \: = \: {a}^{  \: [ \:  {m}^{2} -  {n}^{2}  \:  +  \:  {n}^{2} -  {p}^{2}  \:  +  \:{p}^{2} -  {m}^{2} \:  \:   ] } \\  \\ \sf \implies \: \:  LHS \:  \: = \: \:  {a}^{0}  \\  \\ \sf \implies \: \:  LHS \:  \: = \:1

Also ,

RHS = 1

This gives , LHS = RHS

Hence proved!!

Similar questions