Math, asked by Divyanawal, 3 months ago

A
The equation of the normal to the surface 2x2 + y2 + 22 = 3 at (2, 1, -3) is

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

We know that,

  • If f(x, y, z) be any surface, then equation of normal to the surface at (a, b, c) is given by

  \:  \:  \:  \:  \:  \: \boxed{ \sf \: \dfrac{x - a}{ \: \dfrac{\partial \:f}{\partial \:x} \: }  = \dfrac{y - b}{\dfrac{\partial \:f}{\partial \:y} }  = \dfrac{z - c}{\dfrac{\partial \:f}{\partial \:z} } }

Now,

Given surface is

\rm :\longmapsto\:f =  {2x}^{2}  +  {y}^{2}  + 2z - 3 = 0 -  -  - (1)

Differentiate partially w. r. t. x, we get

\rm :\longmapsto\:\dfrac{\partial \:f}{\partial \:x}  = 4x

Therefore,

\rm :\implies\: \:  \bigg(\dfrac{\partial \:f}{\partial \:x} \bigg)_{(2,1,-3)} = 4 \times 2 = 8

Now,

Again Differentiate (1) partially w. r. t. y, we get

\rm :\longmapsto\:\dfrac{\partial \:f}{\partial \:y} = 2y

Therefore,

\rm :\implies\: \:  \bigg(\dfrac{\partial \:f}{\partial \:y} \bigg)_{(2,1,-3)} = 2 \times 1 = 2

Now,

Again differentiate (1) partially w. r. t. z, we get

\rm :\longmapsto\:\dfrac{\partial \:f}{\partial \:z} = 2

Now, we have

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:  \:  \:  \bigg(\dfrac{\partial \:f}{\partial \:x} \bigg)_{(2,1,-3)} = 8

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:  \:  \:  \bigg(\dfrac{\partial \:f}{\partial \:y} \bigg)_{(2,1,-3)} = 2

 \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:  \:  \:  \bigg(\dfrac{\partial \:f}{\partial \:z} \bigg)_{(2,1,-3)} = 2

So, equation of normal to the surface at the point (2, 1, - 3) is

\rm :\longmapsto\:{ \sf \: \dfrac{x - a}{ \: \dfrac{\partial \:f}{\partial \:x} \: }  = \dfrac{y - b}{\dfrac{\partial \:f}{\partial \:y} }  = \dfrac{z - c}{\dfrac{\partial \:f}{\partial \:z} } }

On substituting the values, we get

\rm :\longmapsto\:\dfrac{x - 2}{8}  = \dfrac{y - 1}{2}  = \dfrac{z + 3}{2}

\rm :\longmapsto\:\dfrac{x - 2}{4}  = \dfrac{y - 1}{1}  = \dfrac{z + 3}{1}

Additional Information :-

If f(x, y, z) be any surface, then equation of tangent plane to the surface at (a, b, c) is given by

 \boxed{ \sf \: (x - a)\dfrac{\partial \:f}{\partial \:x} \:  +  \: (y - b)\dfrac{\partial \:f}{\partial \:y} \:  +  \: (z - c)\dfrac{\partial \:f}{\partial \:z} = 0}

Similar questions