Math, asked by madeshiyanitisha, 10 months ago


(a) The point A (7, 3) and C (0, - 4) are two opposite vertices of rhombus ABCD. Find the equation of diagonal BD. ​

Answers

Answered by mysticd
8

A( 7,3) and C(0,-4) are two opposite vertices of Rhombus ABCD.

 Mid-point \: of \: AB \:is \: O \\= \Big(\frac{x_{1}+x_{2}}{2} , \frac{x_{1}+x_{2}}{2}\Big)\\= \Big( \frac{7+0}{2}, \frac{3-4}{2}\Big) \\= \Big( \frac{7}{2}, \frac{-1}{2}\Big) \: --(1)

 Slope \: of \: the \: diagonal\:AB (m) \\= \frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\= \frac{-4-3}{0-7}\\= \frac{-7}{-7} \\= 1 \: --(2)

 Slope \: of \: the \: diagonal \: BD \\= \frac{-1}{m} \: \blue {( AC \: \perp BD )}

 = -1 \: --(3)

 \underline {\blue {Equation \: of \:the \: diagonal \: BD : }}

 Slope \: of \: BD  = -1 \: and \: it \: passes \:through \:the \:point \: O\Big( \frac{7}{2}, \frac{-1}{2}\Big)

 y - y_{1} = slope \times (x-x_{1})

 \implies y - \Big(\frac{-1}{2}\Big) = (-1)\Big(x - \frac{7}{2}\Big)

 \implies y + \Big(\frac{1}{2}\Big) = -x + \frac{7}{2}

/* Multiplying each term by 2 , we get */

 \implies 2y + 1 = -2x + 7

 \implies 2x + 2y = 6

/* Divide each term by 2 , we get */

 \implies x + y = 3

Therefore.,

 \red { Required \: Equation \: of \: diagonal \:BD}

 \green { x + y = 3 }

•••♪

Attachments:
Similar questions