Math, asked by khushichimnani, 6 months ago

A thin cylindrical tin contains 1 litre paint. If diameter of the tin is 14cm then what is the height of the tin? ​

Answers

Answered by Anonymous
72

━━━━━━━━━━━━━━━━━━━━━━━

 \small \bold{For \: a \: Cylindrical \: \: tin}-

 \large \underline \bold{Given}:-

\: \: \: \: \: \: \: \: \: \sf{Capicity \: (V) = 1 \: ltr}

\: \: \: \: \: \: \: \: \sf{Diameter \: (d) = 14 \: cm}

 \large \underline \bold{To \: Find}:-

\: \: \: \: \sf{what's \: the \: height \: of \: this \: tin \: ?}

 \large \underline \bold{Usable \: Formula}:-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \large\boxed{\sf\red{V = \pi r^{2} h}}

 \small \bold{here \: ,}

\: \: \: \: \: \sf{V = Capicity \: of \: cylindrical \: tank}

\: \: \: \: \: \: \sf{r = radius \: of \: the \: tin}

\: \: \: \: \: \sf{h = height \: of \: the \: tin}

\: \: \: \: \: \: \: \: \: \: \: \: \: \large\boxed{\sf\red{1 \: ltr = 1000 \: cm^{3}}}

 \large \underline \bold{Solution}:-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{V = 1000 \: cm^{3}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{\pi r^{2} h = 1000}

\: \sf{\dfrac{22}{7}\times (7)^{2}\times h = 1000}

\: \: \: \: \: \sf{\dfrac{22}{\cancel{7}}\times \cancel{49}\times h = 1000}

\: \: \: \: \: \: \: \: \: \sf{22\times 7\times h = 1000}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{154h = 1000}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{h = \frac{1000}{154}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{h = \dfrac{500}{77}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \small \bold{h = 6.49 \: cm}

━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
57

Given :-

  • Capacity (V) = 1 litre
  • Diameter (d) = 14cm

To Find:-

  • Height of the tin.

Solution:-

Formula used:-

  • V = πr²h

Here,

  • V = Capacity of cylindrical tin
  • r = radius of tin
  • h = height of tin

As we know,

★ 1 litre = 1000 cm³

•°• V = 1000cm³

According to the question;

→ V = πr²h

→ 1000 = 22/7 × (7)² × h

→ 1000 = 22/7 × 49 × h

→ 1000 = 22 × 7 × h

→ 1000 = 154 h

→ h = 1000/154

→ h = 500/77

→ h = 6.49 cm

Hence,

  • Height of the tin = 6.49 cm.
Similar questions