Physics, asked by kumarujjwal6210, 5 months ago

A thin ring of mass 30 kg and radius 1 m
rests on a rough inclined plane as shown in
the figure.
The minimum coefficient of friction needed
for the system to remain in equilibrium is
3
30°​

Answers

Answered by kartik1017
47

i think answer for this question is 1/2√3

Attachments:
Answered by aliyasubeer
0

Answer:

The minimum coefficient of friction is \frac{1}{2\sqrt{3} }.

Explanation:

Let the coefficient of friction be $\mu$.

The force by upper rope be $F$;

Friction force be $F_{f}$.

The normal force on the hoop = $\mathrm{mg} \cos \theta$

Therefore,

Maximum friction force = $\mu \mathrm{mg} \cos \theta$

Hoop at rest. So moment balance on hoop where friction is acting)=

$\sum \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}=0$$2 \mathrm{rF} \hat{\mathrm{j}}-\mathrm{rmg} \sin \theta \hat{\mathrm{j}}=0$$\mathrm{F}=\frac{\mathrm{mg} \sin \theta}{2}$

Force balance along the incline:

$\mathrm{F}_{\mathrm{f}}+\mathrm{F}=\mathrm{mg} \sin \theta$$\therefore \mathrm{F}_{\mathrm{f}}=\frac{\mathrm{mg} \sin \theta}{2}$

$$\therefore \mathrm{F}_{\mathrm{f}}=\frac{\mathrm{mg} \sin \theta}{2}$$For $\mu$ to be minimum.$$\mathrm{F}_{\mathrm{f}}=\mu \mathrm{mg} \cos \theta=\frac{\mathrm{mg} \sin \theta}{2}$$$$\therefore \quad \mu=\frac{\tan \theta}{2} ( \\ \tan \theta=\tan #30 )\\\\\quad \mu=\frac{\tan \ 30}{2}\\= \frac{1}{2\sqrt{3} } $$

Similar questions
Physics, 11 months ago