Physics, asked by Anonymous, 5 months ago

A thin spherical shell of Metal has a radius of 25m and carriers a charge 2*10^-6C. Calculate the electrostatic intensity at a point a) inside a shell b) on the shell and 3m from the center of the shell. ​​

Answers

Answered by Anonymous
18

EXPLANATION :

Thin spherical shell of metal has a radius

of 25m

\sf\:charge\:carries\:=2 \times  {10}^{6}c

To calculate the electrostatic intensity at a

point

(1) = inside a shell

The charge intensity inside a shell is = 0

(2) = on the shell

 \sf \: E =  \dfrac{1}{4\pi \epsilon _{0} }  \times  \dfrac{q}{ {r}^{2} }  \\  \\  \sf \: E \:  =   \frac{kq}{ {r}^{2} }  \\  \\  \sf \:E \:  =  \frac{9 \times  {10}^{9}  \times 2 \times  {10}^{6} }{ {25}^{2} }  \\  \\  \sf \: E \:  =  \frac{18 \times  {10}^{15} }{625}  \\  \\   \sf \: E = 0.0288 \times 10 {}^{15} \frac{n}{c}

(3) = 3 m from the center of shell

 \sf \: E \:  =  \frac{kq}{ {r}^{2} } \\  \\  \sf \: E \:  =  \frac{9 \times 10 {}^{9}  \times 2 \times  {10}^{6} }{ {3}^{2} } \\  \\  \sf \:  E \:  =  \frac{18 \times  {10}^{15} }{9}   \\  \\  \sf \: E \:  = 2 \times  {10}^{15}  \frac{n}{c}

Answered by ItsMagician
9

\huge \sf{ \pink{ \underline{ \pink{\fbox {\blue{ Answer }}}}}}

Thin spherical shell of metal has a radius of 25m.

\sf \: charge \: carries \: = 2 \times {10}^{6}c.

To calculate the electrostatic intensity at a point.

(1) = inside a shell.

The charge intensity inside a shell is = 0.

(2) = on the shell.

\begin{gathered} \sf \: E = \dfrac{1}{4\pi \epsilon _{0} } \times \dfrac{q}{ {r}^{2} } \\ \\ \sf \: E \: = \frac{kq}{ {r}^{2} } \\ \\ \sf \:E \: = \frac{9 \times {10}^{9} \times 2 \times {10}^{6} }{ {25}^{2} } \\ \\ \sf \: E \: = \frac{18 \times {10}^{15} }{625} \\ \\ \sf \: E = 0.0288 \times 10 {}^{15} \frac{n}{c} \end{gathered}

(3) = 3 m from the center of shell.

\begin{gathered} \sf \: E \: = \frac{kq}{ {r}^{2} } \\ \\ \sf \: E \: = \frac{9 \times 10 {}^{9} \times 2 \times {10}^{6} }{ {3}^{2} } \\ \\ \sf \: E \: = \frac{18 \times {10}^{15} }{9} \\ \\ \sf \: E \: = 2 \times {10}^{15} \frac{n}{c} \end{gathered}

Similar questions