Physics, asked by usmanbhalli505, 7 months ago

A thin strip of material is bent into the shape of a semicircle of radius R.
Find its center of mass. ​

Answers

Answered by nirman95
3

To find:

Centre of mass of a semi-circular ring of Radius R;

Calculation:

Linear mass density of ring

 \lambda =  \dfrac{m}{\pi R }

 =  >  \dfrac{dm}{dy}  =  \dfrac{m}{\pi R }

 =  >  dm =  \dfrac{m}{\pi R }  \times (dy)

 =  >  dm =  \dfrac{m}{\pi R }  \times (R \: d \theta)

 =  >  dm =  \dfrac{m \: d \theta}{\pi  }

So, centre of mass :

  \displaystyle \: \bar{y} =  \dfrac{1}{m}  \int \: y \: dm

 =  >   \displaystyle \: \bar{y} =  \dfrac{1}{m}  \int \: R \cos( \theta)\: dm

 =  >   \displaystyle \: \bar{y} =  \dfrac{1}{m}  \int \: R \cos( \theta)\:  \frac{m \:  d\theta}{\pi}

 =  >   \displaystyle \: \bar{y} =  \dfrac{1}{\pi}  \int \: R \cos( \theta) \: d \theta

 =  >   \displaystyle \: \bar{y} =  \dfrac{R}{\pi}  \int \:  \cos( \theta) \: d \theta

Putting limit ;

 =  >   \displaystyle \: \bar{y} =  \dfrac{R}{\pi}  \int_{0}^{\pi} \:  \cos( \theta) \: d \theta

 =  >   \displaystyle \: \bar{y} =  \dfrac{2R}{\pi}

So, final answer is:

  \boxed{ \red{ \large{ \sf{ \: \bar{y} =  \dfrac{2R}{\pi}}}}}

Attachments:
Similar questions