A thin walled hollow cylinder is rolling down an incline without sliping .at any instant the ratio Rotatioal K.E.is and translational K.E is
Answers
Answered by
3
Rotational kinetic energy, K_{R}=\frac{1}{2} l \omega^{2}K
R = 21 lω 2
K_{R}=\frac{1}{2} \times \frac{M R^{2}}{2} \omega^{2}=\frac{1}{4} M v^{2} \quad(\because v=R \omega)K
R = 21 × 2MR 2 ω 2 = 41 Mv 2 (∵v=Rω)
Transnational kinetic energy
K_{T}=\frac{1}{2} M v^{2}K
T = 21Mv 2
Total kinetic energy =K_{T}+K_{R}=K T +K R
\begin{gathered}\begin{array}{l}=\frac{1}{2} M v^{2}+\frac{1}{4} M v^{2} \\=\frac{3}{4} M v^{2}\end{array}\end{gathered}
= 21 Mv 2 + 41 Mv 2= 4 3 Mv2
therefore, “Rotational K.E. : Transnational K.E. : Total K.E.”=\frac{1}{4} :\frac{1}{2} :\frac{3}{4}
41: 21 :43 = 1:2:3
Similar questions