Math, asked by Nighojkar, 9 months ago

A three digit number is equal to 17 times the sum of the digits if the digits are reversed the new number is 198 more than the original number the sum of the extreme digits is 1 less than the middle digits find the original number.

Answers

Answered by ʙʀᴀɪɴʟʏᴡɪᴛᴄh
13

Answer:

Let ones digit = x  , tens digit = y , hundreds digit = z

So, number becomes = 100z+10y+x

According to question-

  100z+10y+x   =  17(x+y+z)

  100z+10y+x   =   17x + 17y + 17z

  100z-17z +10y-17y + x-17x = 0

   83z -7y -16x = 0                                     -----------------------(1)

Also,

100z+10y+x + 198 = 100x + 10y + z

100z- z +10y-10y +x - 100x +198 = 0

99z - 99x +198 = 0

99x - 99z = 198  

 x - z = 2 

 x = z + 2                                                       ----------------------------(2)

And,  

z + x = y-1

By putting (2)

y = z+z+2+1      

 y = 2z+3                                                        ----------------------------(3)

                 Putting (3) and (2) in (1) we get

 

83z -7(2z+3) -16(z+2) = 0

83z -14z -21 -16z -32  = 0

53z = 53

z = 1

put z = 1 in (3)

y = 2(1) +3

y = 5

Put z = 1 in (2) 

x = 1+3= 3

So. number = 100(1) + 10(5)  + 3 = 153

So, number = 153

Similar questions