Physics, asked by yashsinghys3406, 10 months ago

A tightly-wound, long solenoid carries a current of 2.00 A. An electron is found to execute a uniform circular motion inside the solenoid with a frequency of 1.00 × 108 rev s−1. Find the number of turns per metre in the solenoid.

Answers

Answered by Aakash7563
0

i = 2a, f = 108rev/sec, n= ?, me = 9.1 × 10–31kg, Read more on Sarthaks.com - https://www.sarthaks.com/67872/a-tightly-wound-long-solenoid-carries-a-current-of-2-00a

Attachments:
Answered by bhuvna789456
0

The number of turns per metre in the solenoid is 1421 turns/m

Explanation:

Step 1:

Given data in the question  :

Magnitude of Solenoid current, i = 2 A

Electron Frequency,  f=1 \times 10^{8} \mathrm{rev} / \mathrm{s}

Electron mass

Electron Charge, q=1.6 \times 10^{-19} \mathrm{C}

We know that inside a solenoid the magnetic field is given by

B=\frac{\mu_{0} n i}{2 a}

Step 2:

When a particle executes uniform circular motion within a magnetic field, the particle frequency is given by

    f=\frac{q B}{2 \pi m}

   B=\frac{2 \pi m f}{q}

u_{0} n i=\frac{2 \pi m f}{q}

    n=\frac{2 \pi m f}{\mu_{0} q i}

      =\frac{2 \pi \times 9.1 \times 10^{-31} \times 1 \times 10^{8}}{4 \pi \times 10^{-7} \times 1.6 \times 10^{-19} \times 2}

      =\frac{2 \pi \times 9.1 \times 10^{-23}}{8 \pi \times 10^{-7} \times 1.6 \times 10^{-19}}

      =\frac{9.1 \times 10^{-4}}{4 \times 10^{-7} \times 1.6}

      =\frac{9.1 \times 10^{-4}}{4 \times 10^{-7} \times 1.6}

      =\frac{9.1 \times 10^{3}}{6.4}

      =\frac{9.1 \times 10^{3}}{6.4}

      =1.421 \times 10^{3}

      =1421$ turns/m

Thus the number of turns per metre in the solenoid is 1421 turns/m .

Similar questions