Physics, asked by Divyavg1595, 2 months ago

A torque of 100Nm,acting on a wheel of rest rotates it through 200 radians in 10 sec what is the angular acceleration?

Answers

Answered by Anonymous
88

Given Information

  • Torque of the wheel = 100Nm
  • Initial Angular Velocity = 0 rad/s
  • Angular Displacement = 200 rad
  • Time = 10s

We know that,

 \star \ \boxed{ \boxed{  \theta =  \omega \tau +  \dfrac{1}{2}  \alpha { \tau} {}^{2} }}

Substituting the values,

 \longrightarrow 200 = 0 \times 10 +  \dfrac{ \alpha }{2} \times  {10}^{2}  \\  \\  \longrightarrow 200 =  \alpha  \times 10 \times 5 \\  \\ \longrightarrow 40 =  \alpha  \times 10  \\  \\  \longrightarrow   \boxed{ \boxed{\alpha  = 4  \: rad /s {}^{2} }}

Angular acceleration of the wheel is 4rad/s².

Answered by BrainlyCyclone
78

Answer:

Given :-

  • Torque = 100Nm
  • Initial Angular Velocity = 0 rad/s
  • Angular Displacement = 200 rad
  • Time = 10s

To Find :-

Angular acceleration

Solution :-

 \theta = \omega \tau + \dfrac{1}{2} \alpha \times  { \tau} {}^{2}

θ= Angular Displacement

ω = Initial angular velocity

τ = Time

α = Acceleration

 \sf \:200 =  0 \times 10 +  \dfrac{1}{2}  \times  \alpha  \times  {10}^{2}

 \sf \: 200 = 0 +  \dfrac{1}{2}  \alpha \:  \times 100

 \sf \: 200 = 0 + 1 \alpha  \:  \times 50

 \sf \: 200 = 50 \alpha

 \alpha  =  \dfrac{200}{50}

 \alpha  = 4 \sf \: ms {}^{ - 1}

Similar questions