Physics, asked by parthshn9163, 11 months ago

A torsional pendulum consists of a solid disc connected to a thin wire (α = 2.4 × 10–5 °C–1) at its centre. Find the percentage change in the time period between peak winter (5°C) and peak summer (45°C).

Answers

Answered by bhuvna789456
5

The percentage change in the time period between peak winter (5°C) and peak summer (45°C) is 9.6   \times 10^{-2} percent

Explanation:

Step 1:

The wire  Coefficient of linear expansion, \alpha = 2.4 \times 10^{-5}   ^{\circ}C^{-1}

Let I_0  be the torsional pendulum's moment of inertia at 0 ° C

If K is the wire's torsional constant, then Torsional pendulum time period T:

T=2\pi \sqrt{\frac{I}{K}………….(1)  

Here

I = Moment of inertia a after temperature change

When the temperature changes by ∆θ, moment of inertia I,

I = I_0(1+2\alpha  \Delta \theta)

Step 2:

When the value of I is replaced in equation(1) we get:

T_{1}=2 \pi \sqrt{\frac{I_{o}((1+2 \alpha \Delta \theta))}{K}}

∆θ= 5 °C

Time period T_1

T_{1} &=2 \pi \sqrt{\frac{l_{0}((1+2 \times \alpha \times 5))}{K}} \\

T_{1} &=2 \pi \sqrt{\frac{l_{0}((1+10 \alpha))}{K}}

∆θ= 45 °C

Step 3:  

Time period T_2

T_{2}=& 2 \pi \sqrt{\frac{l_{0}(1+2 \times \alpha \times 45)}{K}} \\

& T_{2}=2 \pi \sqrt{\frac{l_{0}(1+90 \alpha)}{K}} \\

\frac{T_{2}}{T_{1}}=& \frac{2 \pi \sqrt{\frac{l_{0}(1+90 \alpha)}{K}}}{2 \pi \sqrt{\frac{\left.l_{0}(1+10 \alpha)\right)}{K}}} \\

& \frac{T_{2}}{T_{1}}=\sqrt{\frac{1+90 \alpha}{1+10 \alpha}}

\frac{T_{2}}{T_{1}}=& \sqrt{\frac{1+90 \times 2.4 \times 10^{-5}}{1+10 \times 2.4 \times 10^{-5}}} \\

\frac{T_{2}}{T_{1}}=\sqrt{\frac{1.00216}{1.0024}} \\

\left.\%_{ \text { change }}=\left( \frac{T_{2}}{T_1}\right.}-1\right) \times 100 \\

&=(\sqrt{\frac{1.00216}{1.0024}}-1) \times 100\\

Consequently, the percentage change in the torsional pendulum period between peak winters and peak summers is 9.6 x  10^{-2} percent

&=0.0959 \%=9.6 \times 10^{-2} \%

Answered by Anonymous
4

\huge{\boxed{\mathcal\pink{\fcolorbox{red}{white}{Answer}}}}

The percentage change in the time period between peak winter and peak summer is

9.6 \times  {10}^{ - 2}

Similar questions