Math, asked by ShanikantSingh, 1 year ago

a total of 500 people took dips in a rectangular tank which is 80 metre long and 50 metre board what is the total rise in the level of water in the tank if the average volume of water that is displaced power(or raised) raised by one person in 0.04 mcube?​

Answers

Answered by majorSRG
0
I don’t know how to do this please get help from your teacher
Answered by nilesh102
3

\textbf{\huge\underline{\underline\red{solution} : -  }} \\  \\ \bold{\underline\purple{here \: we \: know}} \\  \\  \red{1.} \bold \blue{ \: length  \: (l)\: of \: cuboidal \: \: tank \: is \: 80 \: m .} \\ \red{2.} \bold \blue{ \: breadth  \:( b)\: of \: cuboidal \: tank \: is \: 50 \: m.} \\ \red{3.} \bold \blue{ \: displacement \: of \: water \: by \: a \: one \: } \\  \bold \blue{person \: in \: a \: tank \: is \:0.04 \:  {m}^{3} .} \\  \\ \underline \bold\red{so \:  \:displacement \: of \: water \: in \: a \: tank \: by \:} \\ \underline \bold\red{ 500 \: persons  }  =  \blue{500 \times0.04 = 20\: }\bold\blue{ {m}^{3}  \:  \:  \:  \: ..(1)} \\  \\  \underline \bold \purple{let \: height \: of \: cuboidal \: tank \: is \: h} \\  \\ \underline\bold\blue{to \: find \: volume \: of \: water \: in \: tank} \\  \\ \underline \bold \red{volume\: of \: cuboidal \: tank \: } =  \bold \purple{ l\times  b\times h} \\  \\  \bold \red{v.o.c.t} =  \bold \purple{80 \times 50 \times h} \\  \\ \bold \red{v.o.c.t} =  \bold \purple{(4000 \times h \: \: )  {m}^{3} \:  \:  \: ..(2) } \\  \\    \underline\bold\blue{as \: we\: know} \\  \\  \underline\bold\purple{volume \: of \: raised \: water \: in \: cuboidal } \\ \underline\bold\purple{tank \: is \: equal \: to \: displacement \: of \: water \: in } \\ \underline\bold\purple{ tank\: by \:500 \: person .} \\  \\ \underline\bold\red{hence} \\  \\ \bold\red{volume \: of \: raised \: water \: in \: cuboidal} \\\bold\red{tank \:}  = \bold\purple{ displacement \: of \: water \: in } \\ \bold\purple{ tank\: by \:500 \: person .} \\  \\   =  > \bold \blue{4000 \times h} = \bold \blue{20} \\  \\  =  > \bold \blue{h} = \bold \blue{ \frac{20}{4000}} = \bold \blue{ \frac{1}{200} } = \bold \blue{0.005 \: m} \\  \\   \underline \bold\red{Hence   \: \purple{0.005 \: m} \: level \: of \: water \: rise \: in \: tank.}

Similar questions