A tower AB is 20 m high and BC , its shadow on ground , is 20√3 m long. Find the sun 's altitude.
Answers
Answered by
374
From the figure ,
Height of the tower = AB = 20 m
Length of the shadow = BC = 20√3 m
the altitude of the Sun = <ACB
tan <ACB = AB/CB
= 20/20√3
= 1/√3
tan <ACB = tan 30°
<ACB = 30°
I hope this helps you.
: )
Height of the tower = AB = 20 m
Length of the shadow = BC = 20√3 m
the altitude of the Sun = <ACB
tan <ACB = AB/CB
= 20/20√3
= 1/√3
tan <ACB = tan 30°
<ACB = 30°
I hope this helps you.
: )
Attachments:
![](https://hi-static.z-dn.net/files/d23/bb62daa4deb0531321c94babc1e0c5ba.jpg)
Answered by
164
Given that AB = height = 20 m
BC = base = 20√3 m
=======================
tan Ф =![\frac{20}{20 \sqrt{3} } \frac{20}{20 \sqrt{3} }](https://tex.z-dn.net/?f=+%5Cfrac%7B20%7D%7B20+%5Csqrt%7B3%7D++%7D+)
tan Ф =![\frac{1}{ \sqrt{3} } \frac{1}{ \sqrt{3} }](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B+%5Csqrt%7B3%7D++%7D++)
tan Ф = tan 30
Ф = 30
Sun's altitude is at 30°
i hope this will help you
(-:
BC = base = 20√3 m
=======================
tan Ф =
tan Ф =
tan Ф = tan 30
Ф = 30
Sun's altitude is at 30°
i hope this will help you
(-:
Attachments:
![](https://hi-static.z-dn.net/files/d9d/92d92dbf69258db06483c06829b7aa53.png)
Similar questions