Math, asked by afzalkhan77563, 2 months ago

A tower stands vertically on the ground. From a point which is 15 meter away from the
foot of the tower, the angle of elevation of the top of the tower is 45°. What is the height
of the tower?

Answers

Answered by aaryaasharma2000
1

Answer:

The answer is 15m.

Step-by-step explanation:

The method is given in the attachment.

Attachments:
Answered by MrImpeccable
13

ANSWER:

Given:

  • A point is taken 15m away from ground.
  • Angle of elevation = 45°

To Find:

  • Height of the tower

Diagram:

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf h}\put(2.8,.3){\large\bf 15m}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7)\put(3.8,1.3){\large\bf $45^{\circ}$}\end{picture}

Solution:

In the given diagram, AB is the tower.

So,

\sf{:\longrightarrow \tan\theta = \dfrac{perpendicular}{base}} \\\\\sf{:\implies \tan{45^{\circ}} = \dfrac{AB}{BC}} \\\\\sf{:\implies 1 = \dfrac{h}{15m}} \\\\\bf{:\implies h = 15m}

Therefore, the height of the tower is 15m.

Formulae Used:

  • tanΘ = perpendicular/base
  • tan 45° = 1

Learn More:

TRIGONOMETRIC VALUES:

 \Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

TRIGONOMETRIC RATIOS:

  • sinΘ = perpendicular/hypotenuse
  • cosΘ = base/hypotenuse
  • tanΘ = perpendicular/base
  • cotΘ = base/perpendicular
  • secΘ = hypotenuse/base
  • cosecΘ = hypotenuse/perpendicular
Similar questions