Math, asked by kvnmurthy19, 1 year ago

A toy is in the form of a cone mounted on a hemisphere. The diameter of the base and the height of the cone are 6 cm and 4 cm respectively. Determine the surface area of the toy.
(use π = 3.14)

Answers

Answered by siddhartharao77
52

Answer:

103.62 cm²

Step-by-step explanation:

Given, height of cone = 4 cm and diameter = 6 cm. Then, radius = 3 cm.

Slant height(l) = √r² + h²

                       = √3² + 4²

                       = 5 cm.



∴ Surface area of cone = πrl

                                      = 3.14 * 3 * 5

                                     = 47.1 cm²


∴ Surface area of hemisphere = 2πr²

                                                  = 2 * 3.14 * (3)²

                                                  = 56.52 cm²


Total surface area of toy = Area of cone + Area of hemisphere

                                         = 47.1 + 56.52

                                         = 103.62 cm²


Hope it helps!


sowmiya35: hello
arfa0: Superb yaar
Answered by aaravshrivastwa
23
Given,

Diameter = 6 cm
Radius = 6/2 cm = 3 cm
Height = 4 cm

T.S.A of Toy = T.S.A of Cone + T.S.A of hemisphere.

At first we will find the C.S.A of Cone then C.S.A of Hemisphere.

Now,

C.S.A of Cone

 =  > c.s.a =  \pi \: r \: l

Hence, Slant Height (l) is not given then we will find.

 =  >  {l}^{2}  =  {h}^{2}  +  {r}^{2}

 =  >  {l}^{2}  =  {4}^{2}  +  {3}^{2}

 =  >  {l}^{2}  = 25

 =  >  \: l \:  =  \sqrt{25}

 =  >  \: l \:  = 5 \: cm

As per Formula,

 =  > c.s.a =  \pi \: r \: l

 =  > c.s.a = 3.14 \times 3 \times 5

 =  > c.s.a = 47.1 \:  {cm}^{2}

Now,

T.S.A of Hemisphere

 =  > t.s.a = 2 \times  \pi \times  {r}^{2}

 =  > t.s.a = 2 \times 3.14 \times 3 \times 3

 =  > t.s.a = 56.52 \:  {cm}^{2}

Now, T.S.A of toy = (47.1+56.52) cm^2

=> T.S.A of Toy = 103.62 cm^2


Be Brainly
Similar questions