Math, asked by sriabinaya022, 8 months ago

A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius.
The total height of the toy is 15.5 cm. Find the total surface area of the toy

Answers

Answered by SarcasticL0ve
31

GivEn:

  • Radius of cone = 3.5 cm
  • Height of toy = 15.5 cm

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Total surface area of toy.

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

⠀⠀⠀⠀⠀⠀⠀

☯ Toy is hemispherical at bottom and conical at top.

⠀⠀⠀⠀⠀⠀⠀

Therefore,

T.S.A of toy = C.S.A of hemisphere + C.S.A of cone

⠀⠀⠀⠀⠀⠀⠀

Slant height of cone, l = \sf \sqrt{h^2 + r^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l = \sqrt{3.5^2 + 12^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l = \sqrt{12.25 + 144}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf l = \sqrt{156.25}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{l = 12.5\;cm}}}}}\;\bigstar

━━━━━━━━━━━━━━━

Therefore,

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\;\;\;\star\;\sf 2 \pi r^2 + \pi rl

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 2 \pi (3.5)^2 + \pi (3.5)(12.5)

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 24.5 \pi + 43.75 \pi

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 68.25 \pi

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 68.25 \times \dfrac{22}{7}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\purple{214.5\;cm^2}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore Hence, Total surface area of toy is 214.5 cm².

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Related formulas:

  • TSA of Sphere = 4πr²

  • Volume of sphere = \sf \dfrac{4}{3} \pi r^3

  • TSA of hemisphere = 3πr²

  • CSA of hemisphere = 2πr²

  • Volume of hemisphere = \sf \dfrac{2}{3} \pi r^3

  • TSA of cone = πr(r + l)

  • CSA of cone = πrl

  • TSA of cylinder = 2πr(r + h)

  • CSA of cylinder = 2πrh

  • TSA of cylinder = πr²h
Attachments:
Answered by Anonymous
23

\setlength{\unitlength}{1cm}\begin{picture}(6, 4)\linethickness{0.26mm}\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){5.6}}\put(3,2){\line(0,2){4.5}}\put(1.5,1.7){\sf{3.5 cm}}\qbezier(.2,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(2,4){\sf 12 cm}\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\qbezier(0.2,2)(2.9,-2)(5.8,2)\end{picture}

Answer:

We have,

  • Radius of cone = Radius of hemisphere = 3.5 cm.

  • Height of the toy = 15.5 cm

To calculate the CSA of cone we have to find first the Slant Height of the cone :]

Slant Height (l)² = h² + r²

Slant Height = (15.5)² + (3.5)²

Slant Height = 12.25 + 144

Slant Height (l) = 156.25 cm²

Slant Height = 12.5 cm

Now, we will calculate the TSA of the toy :

➳ TSA of toy = CSA of hemisphere + CSA of cone

➳ TSA of toy = 2πr² + πrl

➳ TSA of toy = 2π(3.5)² + π(3.5)(12.5)

➳ TSA of toy = 24.5π + 43.75π

➳ TSA of toy = 68.25π

➳ TSA of toy = 68.25 * 22/7

TSA of toy = 214.5 cm²

____________________

\boxed{\underline{\underline{\bigstar \: \bf\:Extra\:Brainly\:knowlegde\:\bigstar}}} \\  \\

\boxed{\bigstar{\sf \ Cylinder :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cylinder= \pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ cylinder= 2\pi r h\\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ cylinder= 2\pi r (h+r)

\boxed{\bigstar{\sf \ Cone :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cone= \dfrac{1}{3}\pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Cone = \pi r l \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Cone = \pi r (l+r) \\ \\ \\ \sf {\textcircled{\footnotesize4}} Slant \ Height \ of \ cone (l)= \sqrt{r^2+h^2}

\boxed{\bigstar{\sf \ Hemisphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Hemisphere= \dfrac{2}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Hemisphere = 2 \pi r^2 \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Hemisphere = 3 \pi r^2

\boxed{\bigstar{\sf \ Sphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Sphere= \dfrac{4}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Surface\ Area \ of \ Sphere = 4 \pi r^2

Similar questions