Math, asked by dasdhruv469, 3 months ago

A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same
radies. The total hecht of the toy is 15.5 cm. Find the total surface area of the toy​

Answers

Answered by suraj5070
380

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt A \:toy\: is\: in \:the\: form \:of\: a \:cone\: of\: radius\: 3.5\: cm\\\tt mounted\: on \:a \:hemisphere\: of \:same\: radius. \\\tt The \:total\: height \:of\: the \:toy\: is\: 15.5 \:cm.\\\tt Find\:the \:total\: surface\: area\: of \:the\: toy.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Radius \:of \:the \:cone=3.5\:cm
  •  \sf \bf Radius \:of \:the \:hemisphere=3.5\:cm
  •  \sf \bf Total \:height \:of \:the \:toy=15.5\:cm

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Total \:Surface \:Area \:of \:the \:toy(TSA)

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\pink{\underline {\sf (i)\:Height \:of \:the\:cone}}}

{\blue {\mathfrak{Radius \:of \:the \:hemisphere \:is\:the \:height \:of \:hemisphere}}}

 {\orange {\boxed {\green{\sf Height\: of\: the \:cone=Total\: height \:of \:the \:toy - Height \:of \:hemisphere}}}}

{\blue{\mathfrak{ Let \:the \: height \: of \: the \: cone \: be}  \: {\mathcal{H}}}}

 {\underbrace {\overbrace {\orange {\bf Substitute \:the \:values}}}}

 \sf \bf \implies H=15.5-3.5

 \implies {\orange {\boxed {\boxed{\purple {\sf \bf H=12\:cm}}}}}

————————————————————————————

 {\pink{\underline {\sf (i)\:Slant\:height \:of \:the\:cone}}}

 {\blue {\boxed {\boxed {\boxed {\green {\sf \bf l=\sqrt{{H}^{2}+{r}^{2}}}}}}}}

  •  \sf l=slant \:height \:of \:the \:cone
  •  \sf H=height \:of \:the \:cone
  •  \sf r=radius \:of \:the \:cone

 {\underbrace {\overbrace {\orange {\bf Substitute \:the \:values}}}}

 \sf \bf \implies l=\sqrt{{(12)}^{2}+{(3.5)}^{2}}

 \sf \bf \implies l=\sqrt{144+12.25}

 \sf \bf \implies l=\sqrt{156.25}

 \implies {\orange {\boxed {\boxed{\purple {\sf \bf H=12.5\:cm}}}}}

————————————————————————————

 {\pink{\underline {\sf (iii)\:Total \:Surface \:Area \:of \:the \:toy}}}

{\blue {\boxed {\boxed {\boxed {\green {\sf \bf TSA =3\pi {r}^{2}}}}}}}

  •  \sf TSA=Total \:surface \:area \:of \:hemisphere
  •  \sf r=radius \:of \:the \:hemisphere

 \\

{\blue {\boxed {\boxed {\boxed {\green {\sf \bf TSA =\pi r (r+l)}}}}}}

  •  \sf TSA=Total \:surface \:area \:of \:cone
  •  \sf r=radius \:of \:the \:cone
  •  \sf l=slant \:height \:of \:the \:cone

 \\

{\orange {\boxed {\green {\bf\Big(TSA \:of \:toy\Big) =\Big(TSA \:of \:hemisphere\Big) +\Big(TSA \:of \:cone\Big)}}}}

 \sf \bf \implies TSA \:of \:toy=3\pi {r}^{2}+\pi r(r+l)

 {\underbrace {\overbrace {\orange {\bf Substitute \:the \:values}}}}

 \sf \bf \implies TSA \:of \:toy=3\times\dfrac{22}{7}\times {\Big(3.5\Big)}^{2}+\dfrac{22}{7}\times 3.5\Big(3.5+12.5\Big)

 \sf \bf \implies TSA \:of \:toy=3\times\dfrac{22}{7}\times 3.5\times 3.5+\dfrac{22}{7}\times 3.5\Big(16\Big)

 \sf \bf \implies TSA \:of \:toy=3\times\dfrac{22}{\cancel{7}}\times \cancel{3.5} \times 3.5+\dfrac{22}{7}\times 56

 \sf \bf \implies TSA \:of \:toy=3\times 22\times 0.5 \times 3.5+\dfrac{22}{\cancel{7}}\times \cancel{56}

 \sf \bf \implies TSA \:of \:toy=3\times 22\times 0.5 \times 3.5+22\times 8

 \sf \bf \implies TSA \:of \:toy= 115.5+176

 \implies {\blue{\boxed {\boxed {\boxed{\purple {\mathfrak{TSA\:of \:toy=291.5\:{cm}^{2}}}}}}}}

 {\underbrace {\red{\underline{\red {\overline {\red{\sf \therefore The\:Total \:Surface \:Area \:of \:toy\:is\:291.5\:{cm}^{2}}}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf CSA\:of \:hemisphere = 2 \pi {r}^{2}

 \sf TSA\:of \:hemisphere = 3 \pi {r}^{2}

 \sf Volume \:of \:hemisphere =\dfrac{2}{3} \pi {r}^{3}

 \sf CSA\:of \:cone=\pi r l

 \sf TSA\:of \:cone=\pi r(r+l)

 \sf Volume \:of \:cone =\dfrac{1}{3} \pi {r}^{2}h

Answered by Anonymous
26

Infrastructure can be referred to the basic physical operations of a nation or a business, such as communication, transportation, water, sewage, etc. This operation can be highly expensive investments and an important aspect of the economic development of a country.

Similar questions