Math, asked by SilverJwel, 4 months ago

A toy is in the form of a cone.radius 3.5 cm. sourmounted by a hemisphere of same radius. total height of toy is 15. 5 cm .Find the TSA of toy.​

Answers

Answered by TheEternity
25

Answer :

\boxed{\bf{\large{\ {{214.5 \: cm{ }^{2}}}}}}

Step-by-step explanation :

\large{\bf{\text{\ {{GIVEN \: :-}}}}}

Radius of cone = 3.5 cm

Radius of hemisphere = 3.5 cm

Height of toy = 15.5 cm

\large{\bf{\text{\ {{TO \: FIND \:  :-}}}}}

Total surface area of toy

\large{\bf{\text{\ {{FORMULA \: USED \: :-}}}}}

curved \: surface \: area \: of \: cone \:  = \pi\: r l \\

curved \: surface \: area \: of \: hemisphere \:  = 2\pi \: {r}^{2}  \\

\large{\bf{\text{\ {{SOLUTION \: :-}}}}}

The toy is a combination of a hemisphere and a cone.

Given :-

Radius of cone = 3.5 cm

Radius of hemisphere = 3.5 cm

Height of toy = 15.5 cm

According to the figure :-

So, AD = 15.5 cm

OC = OD = OB = 3.5 cm

OA = AD-OD = 15.5 - 3.5 = 12 cm

Now, TSA of toy,

CSA of cone + CSA of hemisphere

\pi \: r \: l  \:  +  \: 2\pi \:  {r}^{2}  =  \:  \pi \: r \:  \sqrt{ {h}^{2}  +  {r}^{2} }  + 2\pi \:  {r}^{2}   \:  \:  \: \\  => \: \frac{22}{7}  \times 3.5 \times  \sqrt{(12) {}^{2} + (3.5) {}^{2}  }  + 2 \times  \frac{22}{7}  \times ( {3.5)}^{2}  \\ => \: 11 \sqrt{144 + 12.25}  + 22 \times 3.5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ => \: 11 \sqrt{156.25}  + 11 \times 7  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ => \: 11(12.5) + 77  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ => \:  137.5 + 77  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ => \: 214.5 \: cm {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\

So, the total surface area of the toy is 214.5 \:  {cm}^{2} .

Attachments:
Answered by IIMidnightHunterII
21

\LARGE\textbf{\underline{\underline{Given :-}}}

\large\texttt{↦ Radius of the cone = 3.5 cm .}\\\\\large\texttt{↦ Radius of the hemisphere = 3.5 cm .}\\\\\large\texttt{↦ Height of the toy = 15.5 cm .}

\LARGE\textbf{\underline{\underline{To find  :-}}}

\large\texttt{↦ T.S.A. of the toy = ?}

\LARGE\textbf{\underline{\underline{Formula :-}}}

\large: \:\Longrightarrow\underline{\boxed{\textsf\textcolor{green}{$C.S.A_{ ( \: Cone \: ) } = \pi r l $}}}\\\\\\\large: \:\Longrightarrow\underline{\boxed{\textsf\textcolor{green}{$C.S.A _ { ( \: Hemisphere \: ) } = 2 \pi r ^ {2}$}}}

\LARGE\textbf{\underline{\underline{Solution :-}}}

\large\textsf{Given}\begin{cases}\textsf\textcolor{purple}{↦ Radius of the cone = 3.5 cm }\\\\\textsf\textcolor{purple}{↦ Radius of the hemisphere = 3.5 cm }\\\\\textsf\textcolor{purple}{Height of the toy = 15.5 cm }\end{cases}

\large: \:\Longrightarrow\textsf{BO = OC = OD = 3.5 cm......... ( All are the radius of the hemisphere)}\\\\\\\large: \:\Longrightarrow\textsf{AD = AO + OD}\\\\\\\large: \:\Longrightarrow\textsf{15.5 = AO + 3.5}\\\\\\\large: \:\Longrightarrow\textsf{- AO = 3.5 - 15.5}\\\\\\\large: \:\Longrightarrow\textsf{- AO = - 12 }\\\\\\\large: \:\Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{AO = 12 cm .}}}

  • We have to find the slant height ( l ) of the cone , so that we can find the C.S.A ( Curved Surface Area ) of the cone .

  • To find the slant height we have to use the Pythagoras theorem .

  • As the height of the cone and the radius of the cone make a angle of 90° with eachother so by using the Pythagoras theorem we can find the Slant height of the cone.

\large\bigstar\textsf\textcolor{orange}{\: \: \: By Using Pythagoras theorem :-}\\\\\\\large: \:\Longrightarrow\textsf{AC² = OC² + AO²}\\\\\\\large: \:\Longrightarrow\textsf{AC² = 3.5² + 12²}\\\\\\\large: \:\Longrightarrow\textsf{AC² = 12.25 + 144}\\\\\\\large: \:\Longrightarrow\textsf{AC² = 156.25}\\\\\\\large: \:\Longrightarrow\textsf{$AC = \sqrt{156.25}$}\\\\\\\large: \:\Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{AC = 12.5 cm .}}}

\large\bigstar\textsf\textcolor{orange}{\: \: \: $C.S.A_{( \: Cone \: ) } = \cfrac{22}{7} × 3.5 × 12.5$}\\\\\\\large: \:\Longrightarrow\textsf{$= \cfrac{22}{7} × 43.75$}\\\\\\\large: \:\Longrightarrow\textsf{$ = \cancel\cfrac{22}{7} × \cancel{43.75}$}\\\\\\\large: \:\Longrightarrow\textsf{= 22 × 6.25}\\\\\\\large: \:\Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{$C.S.A _ { ( \: Cone \: ) }= 137.5 \: cm^{2}$}}}

\large\bigstar\textsf\textcolor{orange}{\: \: \:$C.S.A _{ ( \: Hemisphere \: ) }= 2 × \cfrac{22}{7} × 3.5 ^ {2}$}\\\\\\\large: \:\Longrightarrow\textsf{$= 2 ×  \cfrac{22}{7}× 12.25$}\\\\\\\large: \:\Longrightarrow\textsf{$= \cfrac{22}{7} × 24.5$}\\\\\\\large: \:\Longrightarrow\textsf{$\cancel\cfrac{22}{7} ×\cancel{24.5}$}\\\\\\\large: \:\Longrightarrow\textsf{= 22 × 3.4}\\\\\\\large: \:\Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{$C.S.A_{ ( \: Hemisphere \: )}= 74.8 \: cm^{2}$}}}

\large\bigstar\textsf\textcolor{orange}{\: \: \: $ T.S.A. _ { ( \: Toy \: ) } = C.S.A_{ ( \: Cone + Hemisphere \: ) } $}\\\\\\\large: \:\Longrightarrow\textsf{= 137.5 + 74.8 }\\\\\\\large: \:\Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{$ T.S.A_ { ( \: Toy \: ) } = 212.3 \: cm^{2}$}}}

Attachments:
Similar questions