Math, asked by sandhyasrivastava304, 9 months ago

A toy is in the form of cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. Find the Total surface area of the toy.​

Answers

Answered by Anonymous
25

\large{\underline{\rm{\green{\bf{Question:-}}}}}

A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. Find the total surface area of the toy.

\large{\underline{\rm{\green{\bf{Given:-}}}}}

The radius of the cone = 3.5 cm

Total height of the toy = 15.5 cm

\large{\underline{\rm{\green{\bf{To \: Find:-}}}}}

The total surface area of the toy.

\large{\underline{\rm{\green{\bf{Solution:-}}}}}

Given that, the radius of the cone and the hemisphere (r) = 3.5 cm or 7/2 cm

The total height of the toy =  15.5 cm.

So, the height of the cone (h) = \sf 15.5-3.5 = 12 \: cm

According to the question,

Slant height of the cone (h) = \sf \sqrt{h^{2}+r^{2}}

\implies \sf l=\sqrt{12^{2}+(3.5)^{2}}

\implies \sf l=\sqrt{12^{2}+\bigg(\dfrac{7}{2} \bigg)^{2} }

\implies \sf l=\sqrt{144+\dfrac{49}{4} }

\sf  =\sqrt{ \dfrac{(576+49)}{4} }

\sf  =\sqrt{\dfrac{625}{4} }

∴ The curved surface area of cone = \sf \pi r l

Substituting the values, we get

\sf \dfrac{22}{7} \times \dfrac{7}{2} \times \dfrac{25}{2} =\dfrac{275}{2} \: cm^{2}

Also, the curved surface area of the hemisphere = \sf 2 \pi r^{2}

Substituting their values,

\sf 2 \times \dfrac{22}{7}\times \dfrac{7}{2} ^{2}

\sf =77 \: cm^{2}

Now, the Total surface area of the toy = CSA of cone + CSA of hemisphere

\implies \sf \dfrac{275}{2} +77 \: cm^{2}

\implies \sf \dfrac{(275+154)}{2} \: cm^{2}

\implies \sf \dfrac{429}{2}  \: cm^{2} =214.5 \: cm^{2}

So, the total surface area (TSA) of the toy is 214.5 cm²

Answered by Anonymous
11

Answer:

We have,

Radius of cone = Radius of hemisphere = 3.5 cm.

Height of the toy = 15.5 cm

To calculate the CSA of cone we have to find first the Slant Height of the cone :]

Slant Height = h² + r²

Slant Height = (15.5)² + (3.5)²

Slant Height = 12.25 + 144

Slant Height = 156.25 cm²

Slant Height = 12.5 cm

Now, we will calculate the TSA of the toy :

➳ TSA of toy = CSA of hemisphere + CSA of cone

➳ TSA of toy = 2πr² + πrl

➳ TSA of toy = 2π(3.5)² + π(3.5)(12.5)

➳ TSA of toy = 24.5π + 43.75π

➳ TSA of toy = 68.25π

➳ TSA of toy = 68.25 * 22/7

➳ TSA of toy = 214.5 cm²

\setlength{\unitlength}{1cm}\begin{picture}(6, 4)\linethickness{0.26mm}\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){5.6}}\put(3,2){\line(0,2){4.5}}\put(1.5,1.7){\sf{3.5 cm}}\qbezier(.2,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(2,4){\sf 12 cm}\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\qbezier(0.2,2)(2.9,-2)(5.8,2)\end{picture}

Similar questions