Math, asked by MaNchEstEr0, 11 months ago

A toy is in the shape of cylinder whose volume is 2640 cm^3 and height is 2 cm then find T.S.A of cylinder.​

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{T.S.A\:of\:cylinder=2883.1637\:cm^{2}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies  Volume \: of \: cylinder = 2640  \: {cm}^{2}  \\  \\  \tt:  \implies Height \: of \: cylinder = 2 \: cm \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies T.S.A \: of \: cylinder = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Volume \: of \: cylinder = \pi {r}^{2} h \\  \\  \tt:  \implies 2640 =  \frac{22}{7}  \times  {r}^{2} \times 2 \\  \\  \tt:   \implies  \frac{2640 \times 7}{22 \times 2} =  {r}^{2}   \\  \\  \tt:  \implies  {r}^{2}  = 420 \\  \\  \tt:  \implies r =  \sqrt{420}  \\  \\   \green{\tt:  \implies r  \approx 20.45 \: cm} \\  \\  \bold{As \: we \: know \:that} \\  \tt:  \implies T.S.A \: of \: cylinder = 2 \pi r(h + r) \\  \\ \tt:  \implies T.S.A \: of \: cylinder =2 \times 3.14 \times 20.45(2 + 20.45) \\  \\ \tt:  \implies T.S.A\: of \: cylinder =2 \times 3.14 \times 20.45 \times 22.45 \\  \\  \green{\tt:  \implies T.S.A \: of \: cylinder =2883.1637 \:  {cm}^{2} }

Answered by Sauron
11

Answer:

The Total Surface Area of the cylinder is  2883.1637 cm²

Step-by-step explanation:

Given :

Volume = 2640 cm³

Height = 2 cm

To find :

The Total Surface Area of the Cylinder

Solution :

Radius of the cylinder -

Volume of cylinder = 2πr²h

⇒ 2640 = 2 × 22/7 × r² × 2

⇒ 2640 = 44/7 × r²

⇒ 2640 × 7 = 44 × r²

⇒ 18480/44 = r²

⇒ 420 = r²

⇒ r = √420

⇒ r ≈ 20.45

Radius = 20.45 cm

\rule{300}{1.5}

Total Surface area of Cylinder -

⇒ 2πr(h + r)

⇒ 2 × 3.14 × 20.45 × (2 + 20.45)

⇒ 2 × 3.14 × 20.45 × 22.45

⇒ 2 × 3.14 × 459.1025

2883.1637 cm²

The Total Surface Area of the cylinder is  2883.1637 cm²

Similar questions