Math, asked by yalusaroja, 4 months ago

A toy is made up of a hemisphere mounted on a cube.
The base block is a cube of side 3 cm and the hemisphere has a diameter of 2 cm.
Find the total surface area of the toy.​

Attachments:

Answers

Answered by Saby123
58

Solution :

 \setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(-3,1.5)(0,0)(3,1.5)\qbezier(-3,1.5)(-2.5,4)(0,4.2)\qbezier(3,1.5)(2.5,4)(0,4.2)\put(-3.5,-4.3){\framebox(6,5)}\qbezier(-3.5,0.7)(-3.5,0.7)(-3,1.5)\multiput(2.5,-4.3)(0,5){2}{\line(2,3){1.5}}\put(4,-2.05){\line(0,1){5}}\put(4,2.95){\line(-1,0){1.5}}\multiput(-3,1.5)(0.3,0){20}{\line(1,0){0.2}}\put(-0.5,2){\bf 2\ cm}\put(-3.3,0){\vector(1,0){5.7}}\put(-3.3,0){\vector(-1,0){0.1}}\put(-0.9,-0.6){\bf 3\ cm}\end{picture}

The diameter of the hemisphere is 2 cm .

Thus , the radius is 1 cm .

The cube has a side length of 3 cm .

Total surface area of the cube :

> 6 a²

> 6 × 9

> 54 cm².

Let us subtract the area of overlap on the upper side of the cube -

> 54 - π r²

> 54 - π

CSA of hemisphere :

> 2 π r²

> 2 π

Total TSA of solid :

> 54 - π + 2π cm² .

> 54 + π cm²

≈ 57.14 cm² approximately .

This is the required answer.

__________________________________________

Answered by Anonymous
52

Answer:

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(-3,1.5)(0,0)(3,1.5)\qbezier(-3,1.5)(-2.5,4)(0,4.2)\qbezier(3,1.5)(2.5,4)(0,4.2)\put(-3.5,-4.3){\framebox(6,5)}\qbezier(-3.5,0.7)(-3.5,0.7)(-3,1.5)\multiput(2.5,-4.3)(0,5){2}{\line(2,3){1.5}}\put(4,-2.05){\line(0,1){5}}\put(4,2.95){\line(-1,0){1.5}}\multiput(-3,1.5)(0.3,0){20}{\line(1,0){0.2}}\put(-0.5,2){\bf 2\ cm}\put(-3.3,0){\vector(1,0){5.7}}\put(-3.3,0){\vector(-1,0){0.1}}\put(-0.9,-0.6){\bf  side \: 3\ cm}\end{picture}

Solution :-

At first Radius of Hemisphere

Radius = 2/2 = 1 cm

Finding TSA of cube

TSA = 6a²

TSA = 6(3)²

TSA = 6(9)

TSA = 54 cm²

Now,

54 - π r²

54 - π

CSA of the Hemisphere

CSA = 2π

Now,

Finding TSA

TSA = 54 - π + 2π

TSA = 54 (2π - π)

TSA = 54 × π

TSA = 54 × 22/7

TSA ≈ 57.14 cm²

Similar questions