A trader selling his goods for 75 and gets a profit percent equal to the cost price. Find the cost price.
Answers
Step-by-step explanation:
Given;
Given;SP = 75 Rs.
Given;SP = 75 Rs.CP = k Rs.
Given;SP = 75 Rs.CP = k Rs.Profit% = k%
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50at k +150 = 0; k = -150
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50at k +150 = 0; k = -150since money and % ≠ -ve
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50at k +150 = 0; k = -150since money and % ≠ -vetherefore CP = 50Rs and P% = 50%
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50at k +150 = 0; k = -150since money and % ≠ -vetherefore CP = 50Rs and P% = 50%#answerwithquality
Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50at k +150 = 0; k = -150since money and % ≠ -vetherefore CP = 50Rs and P% = 50%#answerwithquality#BAL
Question:-
A trader selling his goods for 75 and gets a profit percent equal to the cost price. Find the cost price.
Answer:-
Let the C.P. of the article = Rs. x
∴ Profit = x %
∴ S.P. (100+x100)x=75
=x+75x100=75
∴100x+x2=75×100
x2+100x−7500=0
(x+150)(x−150)=0
∴x−50=0=>x=50
x+150=0=>x=−150
∴ The cost price of the article= Rs.50