Math, asked by rajithapaikarao, 6 hours ago

A trader selling his goods for 75 and gets a profit percent equal to the cost price. Find the cost price.​

Answers

Answered by MrDgp
1

Step-by-step explanation:

Given;

Given;SP = 75 Rs.

Given;SP = 75 Rs.CP = k Rs.

Given;SP = 75 Rs.CP = k Rs.Profit% = k%

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50at k +150 = 0; k = -150

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50at k +150 = 0; k = -150since money and % ≠ -ve

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50at k +150 = 0; k = -150since money and % ≠ -vetherefore CP = 50Rs and P% = 50%

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50at k +150 = 0; k = -150since money and % ≠ -vetherefore CP = 50Rs and P% = 50%#answerwithquality

Given;SP = 75 Rs.CP = k Rs.Profit% = k%Therefore p% = (SP - CP)/CP × 100k = (75-k)/k × 100k² = (75 - k)100k² + 100k -7500 = 0k² +150k - 50k - 7500 = 0k(k+150) - 50(k+150) = 0(k-50)(k+150) = 0at k-50 = 0 ; k = 50at k +150 = 0; k = -150since money and % ≠ -vetherefore CP = 50Rs and P% = 50%#answerwithquality#BAL

Answered by BrainlySpidey
134

Question:-

A trader selling his goods for 75 and gets a profit percent equal to the cost price. Find the cost price.

Answer:-

Let the C.P. of the article = Rs. x

∴ Profit = x %

∴ S.P. (100+x100)x=75

=x+75x100=75

∴100x+x2=75×100

x2+100x−7500=0

(x+150)(x−150)=0

∴x−50=0=>x=50

x+150=0=>x=−150

∴ The cost price of the article= Rs.50

Similar questions