Math, asked by ishannema5, 1 year ago

A traffic signal board indicating SCHOOL AHEAD is a equilateral triangle with side 'a' . Find the area of the signal board using herons formula . If its perimeter is 180 cm ,what will be the area of the signal board ?

Answers

Answered by simran7890
22
hope this helps u further :)
Attachments:

ishannema5: Thank you
simran7890: welcome :)
Answered by shikhaku2014
33

{\bold{Given}} :  \: Perimeter \: of \: signal \: board \:  = 180 \: cm

Length \: of \: the \: side \: of \: equilateral \:  \triangle \:  =  \: a

Perimeter \: of \: signal \: board \:  =  \: perimeter \: of \: triangle

 \because \: perimeter \: of \: euilateral \: triange \:  =  \: 3 \times sides

 \implies \: 3a \:  = 180 \degree

 \implies \: a \:  =  \dfrac{ \cancel{180\degree}} {\cancel{3}}   \:  \:  \:  \large( \: cross \: multipied \large)

 \implies \: a \:  =  \: 60 \: cm

 \Large {Now }

Semi \:  perimeter \:  of  \: the \:  signal \:  board  \: =   \dfrac{ \cancel{180}} {\cancel{2} </p><p>}

90 \: cm

  \bold {\underline{ \underline{By  \: using \:  Heron's  \: formula}}}

 \boxed{Area  \: of \:  triangle \:  =    \sqrt{s(s - a)(s - b)(s - c}}

 \implies \: Area \:  of \:  triangle \:  =  \sqrt{90(9 - 60)(90 - 6)(90 - 60)}

\implies \: Area \:  of \:  triangle \:  =  \sqrt{90 \times 30 \times 30 \times 30}

\implies \: Area \:  of \:  triangle \:  =  \sqrt{30 \times3 \times  30 \times 30 \times 30}

\implies \: Area \:  of \:  triangle \:  =  30 \times 30\sqrt{3}

\implies \: Area \:  of \:  triangle \:  =    \large\bold { \underline { \underline{900\sqrt{3}}}}

Similar questions