Math, asked by 866Alka, 1 year ago

. A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side 'a'. Find the area of the signal board, using Heron’s formula. If its perimeter is 180 cm, what will be the area of the signal board?

Answers

Answered by 99EkanshNimbalkar
45
SOLUTION                                                                                                           Length of the side of equilateral triangle = a
Perimeter of the signal board = 3a = 180 cm
∴ 3a = 180 cm ⇒ a = 60 cm
Semi perimeter of the signal board (s) = 3a/2
Using heron's formula,
Area of the signal board = √s (s-a) (s-b) (s-c)
                                       = √(3a/2) (3a/2 - a) (3a/2 - a) (3a/2 - a)
                                       = √3a/2 × a/2 × a/2 × a/2
                                       = √3a4/16
                                       = √3a2/4
                                       = √3/4 × 60 × 60 = 900√3 cm2
Answered by Anonymous
13

\huge\star{\green{\underline{\mathfrak{Answer: -}}}}

Length of the side of equilateral triangle = a

Perimeter of the signal board = 3a = 180 cm

∴ 3a = 180 cm ⇒ a = 60 cm

Semi perimeter of the signal board (s) = 3a/2

Using heron's formula,

Area of the signal board = √s (s-a) (s-b) (s-c)

= √(3a/2) (3a/2 - a) (3a/2 - a) (3a/2 - a)

= √3a/2 × a/2 × a/2 × a/2

= √3a4/16

= √3a2/4

= √3/4 × 60 × 60 = 900√3 cm2.

Similar questions