Math, asked by Padmathakur, 10 months ago

a train 100m long is running at the speed of 21 kilometre per hour and another train 150 metre long is running at the speed of 36 km per hour in the same direction how long will the faster train take to pass the first train ​

Answers

Answered by Anonymous
3

\red{\underline{\underline{Answer:}}}

\sf{Faster \ train \ will \ take \ 61.2 \ seconds}

\sf{to \ cross \ first \ train.}

\sf\orange{Given:}

\sf{For \ first \ train,}

\sf{\implies{Length=100 \ m}}

\sf{\implies{Speed=21 \ km \ h^{-1}}}

\sf{For \ second \ train,}

\sf{\implies{Length=250 \ m}}

\sf{\implies{Speed=36 \ km \ h^{-1}}}

\sf\pink{To \ find:}

\sf{Time \ taken \ by \ second \ train}

\sf{to \ pass \ first \ train.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Speed \ of \ second \ train \ - \ Speed}

\sf{of \ first \ train.}

\sf{\implies{36-21}}

\sf{\implies{15 \ km \ h^{-1}}}

\sf{If \ we \ consider \ speed \ of \ second \ train}

\sf{15 \ km \ h^{-1}. \ The \ speed \ of \ first}

\sf{train \ will \ be \ zero \ because }

\sf{both \ speed \ will \ be \ at \ same \ position}

\sf{at \ speed \ of \ 21 \ km \ h^{-1},}

\sf{but \ speed \ of \ second \ train \ is }

\sf{15 \ km \ hr^{-1} \ more.}

\sf{Hence, \ for \ speed \ 15 \ km \ h^{-1}}

\sf{of \ second \ train \ speed \ of \ first}

\sf{train \ will \ be \ zero.}

\sf{1 \ km=1000 \ m}

\sf{\therefore{15 \ km=15000 \ m}}

\sf{\implies{Speed=15000 \ m \ h^{-1}}}

\sf{Distance=Addition \ of \ length \ of \ trains}

\sf{\therefore{Distance=100+150}}

\sf{\therefore{Distance=250 \ m}}

\sf{Time(t)=\frac{Distance}{Speed}}

\sf{Time=\frac{250}{15000}}

\sf{\therefore{Time=0.017 \ hr (approx)}}

\sf{1 \ hr=3600 \ seconds}

\sf{\therefore{Time=0.017\times3600}}

\sf{\therefore{Time=61.2 \ seconds}}

\sf\purple{\tt{\therefore{Faster \ train \ will \ take \ 61.2 \ seconds}}}

\sf\purple{\tt{to \ cross \ first \ train.}}

Answered by TheSentinel
21

\color{darkblue}\underline{\underline{\sf Answer:}}

\rm\orange{Time \ taken \ by \ first \ train \ to \ cross  }

\rm\orange{second \ train \ = 61.2 \ seconds}

__________________________________________

\sf\large\underline\red{Given:}

\rm{According \ to \ condition \ for \ first \ train,}

\rm{Length \ = \ 100m}

\rm{Speed \ = \ 21 \ km \ h^-1}

\rm{According \ to \ condition \ for \ second \ train,}

\rm{Length \ = \ 250m}

\rm{Speed \ = \ 36 \ km \ h^-1}

__________________________________________

\sf\large\underline\purple{To \ Find :}

\rm{Time \ taken \ by \ first \ train \ to \ cross }

\rm{second \ train}

__________________________________________

\color{red}\underline{\underline{\sf Solution}}

\rm{Difference \ between \ the \ speeds \ of \ both }

\rm{trains}

\rm{Speed \ of \ first \ train  \ speed \ of \ second \ train}

\rm{= \ 36 \ - \ 21}

\rm{= \ 15 \ km \ {hr}^{-1}}

\rm{If  \ we \ consider  \ speed \ of  \ second \  train  }

\rm{15 \ km \ {hr}^{-1}}

\rm{The \ speed \ of \ first \ train \ will \ be \ zero}

\rm{because \ both \ trains \ will \ be \ at \ same \ position}

\rm{When \ speed \ is \ 21 \ km \ {hr}{-1}}

\rm{but \ speed \ of \ second \ train \ 15 \ km \ {hr}{-1}}

\rm{more \ than \ that \ of \ first \ train}

\rm{we \ know,}

\rm{1 \ km \ = \ 1000 \ m}

\rm{Speed \ = \ 15000 \ m \ {hr}{-1}}

\rm{Distance \ = }

\rm{Length \ of \ first \ train \ + \ Length \ of \ second \ train}

\rm{Distance \ = \ 100 \ + \ 150}

\rm{Distance \ = \ 250 \ m}

\rm{Time \ = \ \frac{Distance}{Speed}}

\rm{Time \ = \ \frac{250}{15000}}

\rm{Time \ = \ 0.017 \ ( Approximate \ value )}

\rm{Now \ convert \ hour \ into \ seconds}

\rm{As \ we \ know,}

\rm{1 \ hr \ = \ 3600 \ sec }

\rm{Time \ = \ 0.017 \times \ 3600}

\rm{Time \ = \ 61.2 \ sec }

\rm\orange{Time \ taken \ by \ first \ train \ to \ cross \ second  }

\rm\orange{train \ = 61.2 \ seconds}

__________________________________________

\rm\green{Hope \ it \ helps \ :))}

Similar questions