Math, asked by aundram8411, 10 months ago

A train 300 m long crossed a platform 900m long in 1 minute 12 second the speed of the train in km/hr was?​

Answers

Answered by Princessofdarknzz
3

Answer:

\huge{ \mathcal{ \purple{a} \green{n} \pink{s} \blue{w} \purple{e} \green{r} \pink{}}}

<body bgcolor="yellow"><front color=green" > <marquee direction="left" > see \: the \: attachment

{ \red{ \fbox{ \green{ \blue{ \underline{ \mathcal \purple{hope \: this \: helps \: u}}}}}}}

Attachments:
Answered by Cosmique
5

 \large{ \underline{ \bf{ \color{blue}Question}}}

A train 300 m long crossed a platform 900 m long in 1 minute 12 second the speed of the train in km/hr was?

\large{ \underline{  \bf\color{red}Answer}}

Total distance covered = (300 + 900) m

total distance covered = 1200 m

[*(we are adding the length of train and platform because platform will be considered crossed only when train's full length will cross the platform) ]

Total time taken = 1 min 12 sec

total time taken = 72 sec

\boxed{ \bf{speed =  \frac{total \: distance}{time \: taken} }}

so,

\mathrm{speed \: of \: train =  \frac{1200}{72} \:  \:  m {s}^{  \tiny{ - 1}} }

 \bold{ \mathrm{speed \: of \: train = \frac{50}{3}   \:  \: m {s}^{ \tiny{ - 1}} }}

To change the speed in m/s into km/h

multiplying the speed in m/s be 18/5

\mathrm{speed \: of \: train =  \frac{50}{3}  \times  \frac{18}{5}  \:  \: km {h}^{ \tiny{ - 1}} } \\  \\  \boxed{ \bf{ \color{red}speed \: of \: train = 60 \: km {h}^{ \tiny{ - 1}} }}

Similar questions