Physics, asked by bonishatripathy285, 9 months ago

A train accelerate from 36 km/h to 54 km/h in 10 sec. Find acceleration and distance travelled by car

Answers

Answered by Anonymous
131

Answer:

 \boxed{\mathfrak{Acceleration \ (a) = 0.5 \ m/s^2}}

 \boxed{\mathfrak{Distance \ travelled \ (s) = 125 \ m}}

Given:

Initial velocity (u) = 36 km/h = 10 m/s

Final velocity (v) = 54 km/h = 15 m/s

Time taken (t) = 10 seconds

To Find:

(i) Acceleration (a)

(ii) Distance travelled (s)

Explanation:

 \star Converting km/h to m/s:

 \sf 1 \:km/h  =  \frac{5}{18}  \:  m/s

So,

 \sf Initial  \: velocity \:  (u) = 36  \: km/h \\ \\    \sf = 36 \times  \frac{5}{18}  \: m/s \\  \\  \sf = 2 \times 5 \: m/s \\  \\  \sf = 10 \: m/s \\  \\  \\  \sf Final \:  velocity \:  (v) = 54  \: km/h \\  \\  \sf = 54 \times  \frac{5}{18}  \: m/s \\  \\  \sf = 3 \times 5 \: m/s \\  \\  \sf = 15 \: m/s

 \sf (i) \:  From \:  1^{st}  \: equation \:  of  \: motion: \\  \boxed{ \bold{v = u + at}}

Substituting value of v, u & t in the equation:

 \sf \implies 15 = 10 + a(10) \\  \\ \sf \implies  10a + 10 = 15 \\  \\  \sf \implies 10a = 15 - 10 \\  \\  \sf \implies 10a = 5 \\  \\  \sf \implies a =  \frac{5}{10}  \\  \\  \sf \implies a =  \frac{1}{2}  \\  \\  \sf \implies a = 0.5 \: m/s

 \therefore

Acceleration (a) = 0.5 m/s

 \sf (ii) \:  From \:  2^{nd}  \: equation \:  of  \: motion: \\  \boxed{ \bold{s = ut + a {t}^{2} }}

Substituting value of u, t & a in the equation:

 \sf \implies s = 10(10) +  \frac{1}{2}  \times 0.5 \times  {(10)}^{2}  \\  \\  \sf \implies s = 100 +  \frac{1}{2}  \times 0.5 \times 100 \\  \\  \sf \implies s = 100 +  0.5 \times 50 \\  \\  \sf \implies s = 100 + 25 \\  \\  \sf \implies s = 125 \: m

 \therefore

Distance travelled (s) = 125 m

Answered by Anonymous
104

Given :

  • Initial velocity , u = 36km/hr =10m/s
  • Final velocity ,v = 54 kmhr= 15m/s
  • t= 10sec

To Find :

  • Acceleration
  • Distance travelled

{\purple{\boxed{\large{\bold{Formula's}}}}}

Kinematic equations for uniformly accelerated motion .

\bf\:v=u+at

\bf\:s=ut+\frac{1}{2}at{}^{2}

\bf\:v{}^{2}=u{}^{2}+2as

and \bf\:s_{nth}=u+\frac{a}{2}(2n-1)

Solution :

Part -1

We have to find the acceleration.

By using equation of motion

\sf\:v=u+at

Now put the given values

\sf\:15=10+a\times10

\sf\:5=10a

\sf\:a=\dfrac{5}{10}

\sf\:a=0.5ms^{-2}

Hence ,Acceleration is 0.5m/s²

Part -2

We have to find the distance covered .

By using equation of motion

\sf\:v^2=u^2+2aS

Now put the given values

\sf\:(15)^2=(10)^2+2\times0.5\times\:S

\sf\:225=100+2\times0.5\times\:S

\sf\:S=\dfrac{225-100}{0.5\times2}

\sf\:S=\dfrac{125}{2\times0.5}

\sf\:S=\dfrac{125\times10}{2\times5}

\sf\:S=125m

Hence ,the distance travelled is 125m.


amitkumar44481: Awesome :-)
Similar questions