Science, asked by ayonticabiswasg0, 9 hours ago

A train accelerates from 36km/h to 54km/h in 10 sec. Find acceleration and the distance travelled by the car.​

Answers

Answered by vaishnavidutt1501232
4

Answer:

Initial speed u = 36 km/h = 36 x 5/18 m/s = 10 m/s

Final speed v = 54 km/h = 54 x 5/18 m/s = 15 m/s

Time t = 10 s

Acceleration a = (v - u)/t = (15 - 10)/10 = 5/10 = 0.5 m/s2.

Distance travelled  S = ut + ½ at2

                                    = 10 x 10 + ½ x 0.5 x 10 x 10     m

                                    = 100 + 25 = 125 m

Answered by Anonymous
15

Answer:

Answer :

  • The acceleration of car is 0.5 m/s.
  • The distance traveled by car is 125 m.

\begin{gathered}\end{gathered}

Given :

  • Initial velocity = 36km/h
  • Final velocity = 54km/h
  • Time = 10 second

\begin{gathered}\end{gathered}

To Find :

  • Acceleration
  • Distance travelled

\begin{gathered}\end{gathered}

Using Formulas :

{\longrightarrow{\small{\underline{\boxed{\sf{a = \dfrac{v - u}{t}}}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{S = ut + \dfrac{1}{2}{at}^{2} }}}}}}

  • v = final velocity
  • u = initial velocity
  • a = acceleration 
  • t = time taken.
  • s = distance

\begin{gathered}\end{gathered}

Solution :

Coverting the Initial velocity and final velocity into m/s :

Initial velocity

\rightarrow{\sf{Initial \:  velocity = 36 k/m}}

\rightarrow{\sf{Initial \:  velocity = 36 \times \dfrac{5}{18}}}

\rightarrow{\sf{Initial \:  velocity =  \cancel{36} \times \dfrac{5}{\cancel{18}}}}

\rightarrow{\sf{Initial \:  velocity = 2 \times 5}}

\rightarrow{\sf{Initial \:  velocity = 10m/s}}

{\rightarrow{\underline{\boxed{\sf{\red{Initial \:  velocity = 10m/s}}}}}}

Final velocity :

\rightarrow{\sf{Final  \: velocity = 54 k/m}}

\rightarrow{\sf{Final  \: velocity = 54 \times  \dfrac{5}{18}}}

\rightarrow{\sf{Final \: velocity =  \cancel{54} \times \dfrac{5}{\cancel{18}}}}

\rightarrow{\sf{Final \: velocity = 3 \times 5}}

\rightarrow{\sf{Final \: velocity = 15m/s}}

{\rightarrow{\underline{\boxed{\sf{\red{Final \: velocity = 15m/s}}}}}}

Hence, the Initial velocity and final velocity is 10m/s and 15m/s.

 \rule{300}{1.5}

Finding the acceleration :

{\rightarrow{\sf{Acceleration = \dfrac{v - u}{t}}}}

{\rightarrow{\sf{Acceleration = \dfrac{15 - 10}{10}}}}

{\rightarrow{\sf{Acceleration = \dfrac{5}{10}}}}

{\rightarrow{\sf{Acceleration = \cancel{\dfrac{5}{10}}}}}

{\rightarrow{\sf{Acceleration = {\dfrac{1}{2}}}}}

{\rightarrow{\sf{Acceleration = 0.5 m/s}}}

\bigstar \: \underline{\boxed{\sf{\red{Acceleration = 0.5 m/s}}}}

Hence, the acceleration of car is 0.5 m/s.

 \rule{300}{1.5}

Now, finding the distance traveled by the car :

{\rightarrow{\sf{Distance = ut + \dfrac{1}{2}{at}^{2}}}}

{\rightarrow{\sf{Distance = \bigg(10 \times 10 \bigg)+ \dfrac{1}{2}{ \bigg(0.5 \times {(10)}^{2} \bigg)}}}}

{\rightarrow{\sf{Distance =100+ \dfrac{1}{2}{ \bigg(0.5 \times {(10 \times 10)} \bigg)}}}}

{\rightarrow{\sf{Distance =100+ \dfrac{1}{2}{ \bigg(0.5 \times 100 \bigg)}}}}

{\rightarrow{\sf{Distance =100+ \dfrac{1}{2} \times 50}}}

{\rightarrow{\sf{Distance =100+ \dfrac{1}{\cancel{2}} \times  \cancel{50}}}}

{\rightarrow{\sf{Distance =100 + 25}}}

{\rightarrow{\sf{Distance =125 \: m}}}

{\bigstar \: {\underline{\boxed{\sf{\red{Distance =125 \: m}}}}}}

Hence, the distance traveled by car is 125 m.

\begin{gathered}\end{gathered}

Learn More :

Velocity :

{\longrightarrow{\small{\underline{\boxed{\bf{v = u  +  at}}}}}}

Displacement with positive accelerations :

{\longrightarrow{\small{\underline{\boxed{\bf{s= ut  +  \dfrac{1}{2}{at}^{2}}}}}}}

Displacement with negative acceleration :

{\longrightarrow{\small{\underline{\boxed{\bf{s= ut - \dfrac{1}{2}{at}^{2}}}}}}}

Displacement knowing initial and final speeds :

{\longrightarrow{\small{\underline{\boxed{\bf{s= \dfrac{1}{2}\big(u + v \big)t}}}}}}

Velocity squared :

{\longrightarrow{\small{\underline{\boxed{\bf{{v}^{2} =  {u}^{2} + 2as}}}}}}

{\color{gray}{\rule{220pt}{2.5pt}}}

Similar questions