Math, asked by shiv12399, 5 months ago

a train crosses a platform 90 long and a man standing on the platform in 15 seconds find the speed of the train

Answers

Answered by aditya1154
0

speed =  \frac{90}{15}  = 6

Answered by Anonymous
187

Question:-

  • A train passes a platform 90 m long in 30 seconds and a man standing on the platform in 15 seconds. The speed of the train is?

Answer:-

  • \large\boxed{\underline{{\rm 21.6\:km/hr}}}

Given:-

  • Length of platform = 90 m

  • Time taken by the train to cross the platform = 30 sec

  • Time taken by the train to pass the platform

To Find:-

  • Length of the train = ?

  • Speed of the train = ?

Solution :-

Let the speed of the train be x.

Let the length of the train be y.

\boxed{\underline{\red{\rm \dfrac{Length\:of\:the\:train}{Speed\:of\:the\:train} =Time \:taken\: by\: the\: train\: to \: pass \:the\: man}}}

:\implies\:\: \rm{\dfrac{y}{x} = 15}

:\implies\:\:\rm{y=15x}\:\:..........(1)

Now,

\boxed{\underline{\red{\rm \dfrac{Length\:of\:the\:train+Length \:of\:the\:platform}{Speed\:of\:the\:train} =Time \:taken\: by\: the\: train\: to \: cross \:the\: man}}}

:\implies\:\:\rm{\dfrac{y+90}{x} }

:\implies\:\:\rm{\dfrac{30}{x} }\:\:............(2)

Putting the value of y from (1) in (2) :-

:\implies\:\:\rm{15x+90=30x }

:\implies\:\:\rm{15x+90-30x=30x-30x }

:\implies\:\:\rm{-15x+90=0 }

:\implies\:\:\rm{-15x+90-90=0-90 }

:\implies\:\:\rm{-15x=-90 }

:\implies\:\:\rm{\dfrac{-15x}{-15}  }

:\implies\:\:\rm{\dfrac{-90}{-15} }

:\implies\:\:\rm{x=6\:sec}

Speed of the train km/hr :-

:\implies\:\:\rm{6 \times \dfrac{18}{5} }

:\implies\:\:\rm{\dfrac{6}{1} \times \dfrac{18}{5} }

:\implies\:\:\rm{\dfrac{6 \times 18}{1 \times 5}}

:\implies\:\:\rm{ \dfrac{105}{5} }

:\implies\:\:\rm{21.6\: km/hr}

\therefore \:\rm{Speed\: of \:the\: train = 21.6\:km/hr}

                                                                                                                                       

Similar questions
Math, 10 months ago