Physics, asked by Sumanbarman943, 2 days ago

A train is travelling at a speed of 72kmph. The driver applies brakes so that a uniform acceleration of -0.2 ms^-2 is produced. The distance travelled by train before it comes to rest is
a) I km b) 10km c)0.1km d)0.01km

Answers

Answered by Yuseong
9

Answer:

Option A

Explanation:

As per the provided information in the given question, we have :.

  • Initial velocity (u) = 72 km/h
  • Final velocity (v) = 0 m/s [As it stops]
  • Acceleration (a) = – 0.2 m/s²

We've been asked to calculate the distance travelled.

In order to calculate the distance covered, firstly we need to convert initial velocity into its standard form.

→ u = 72 km/h

  • To convert km/h to m/s, we multiply the value by 5/18.

→ u = (72 × 5/18) m/s

→ u = (4 × 5/1) m/s

u = 20 m/s

By using the third equation of motion,

v² u² = 2as

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • s denotes distance

→ (0)² – (20)² = 2 × (-0.2) × s

→ 0 – 400 = –0.4 × s

→ – 400 = –0.4s

→ – 400 ÷ (– 0.4) = s

1000 m = s

100 m can also be written as 1 km.

Therefore, the distance travelled by train before it comes to rest is 1 km.

━━━━━━━━━━━━━━━━━━━━━━━━━━

Learn More!

First equation of motion :

  • v = u + at

Second equation of motion :

  • s = ut + ½at²

Third equation of motion :

  • v² = u² + 2as

Where,

v denotes final velocity

u denotes initial velocity

a denotes acceleration

s denotes distance

t denotes time

Answered by SparklingThunder
1

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

A train is travelling at a speed of 72 Kmph . The driver applies brakes so that a uniform acceleration of -0.2 ms^-2 is produced . The distance travelled by train before it comes to rest is :

  • a) 1 Km

  • b) 10 Km

  • c) 0.1 Km

  • d) 0.01 Km

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

  • a) 1 Km ✔️

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • Initial Velocity ( u ) = 72  \sf Km {h}^{ - 1}

  • Acceleration ( a ) = -0.2  \sf m {s}^{ - 2}

  • Final Velocity ( v ) = 0  \sf m {s}^{ - 1} ( At rest )

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  • Distance travelled by train ( s ) .

\green{ \large \underline{ \mathbb{\underline{ EQUATION\:  OF  \: MOTION \: USED : }}}}

 \purple{ \boxed{ \sf  {v}^{2} -  {u}^{2}  = 2as }}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

  \red{\textsf{ \underline{\underline{Converting initial velocity into SI unit : }}}}

To convert kilometre per hour into metre per hour , we multiply the value by 5/18 .

 \displaystyle \sf \longrightarrow u =  \bigg( 72 \times  \frac{5}{18} \bigg)m {s}^{ - 1}   \: \\  \\  \displaystyle \sf \longrightarrow u =  \bigg( 4 \times 5 \bigg)m {s}^{ - 1} \:  \:  \:  \:  \:  \:   \\  \\  \displaystyle \sf \longrightarrow u =  20 \: m {s}^{ - 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \red{\textsf{ \underline{\underline{Distance travelled by train ( s ) : }}}}

 \displaystyle \sf \longrightarrow  {v}^{2}  -  {u}^{2}   = 2as  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \displaystyle \sf \longrightarrow  {(0)}^{2}  -  {(20)}^{2}  = 2 \times ( - 0.2) \times s \:  \\  \\  \displaystyle \sf \longrightarrow  - 400 =  - 0.4s \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \displaystyle \sf \longrightarrow  - 0.4s =  - 400 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow s  = \frac{  \cancel{-} 400}{  \cancel{-} 0.4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \displaystyle \sf \longrightarrow s = 1000 \: m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow s = 1 \: Km \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple{ \boxed{ \begin{array}{l} \textsf{Distance travelled by train ( s ) = 1 Km}  \\  \\  \therefore \textsf{Option ( A ) is correct .}\end{array}}}

\green{ \large \underline{ \mathbb{\underline{KNOW\:MORE: }}}}

  • Acceleration

Acceleration is the rate at which velocity changes with time . Negative acceleration is called retardation .

  • Initial Velocity

Initial velocity is the velocity of the object before the effect of acceleration .

  • Final Velocity

Final velocity is the velocity of the object after the effect of acceleration .

  • Distance

Distance is the length of actual path covered by a moving object in a given time interval .

   \Large{\purple{\boxed{\begin{array}{l} \textsf{Equations of motion : } \\  \\  \textsf{v = u + at} \\  \\   \displaystyle\textsf{s = ut +  $ \sf\frac{1}{2}a {t}^{2} $ } \\  \\ \sf  {v}^{2} -  {u}^{2}  =  2as \end{array}}}}

Similar questions