Physics, asked by devanshu2837, 2 months ago

A train is travelling at a speed of 90kmPh. Brakes are applied so as
to produce a uniform acceleration of -0.5ms-2. Find the distance travelled
by the train before it comes to rest.

Answers

Answered by Anonymous
33

Answer:

Given :-

  • A train is travelling at a speed of 90 km/h.
  • Brakes are applied so as to produce a uniform acceleration of - 0.5 m/s².

To Find :-

  • What is the distance travelled by the train before it comes to rest.

Formula Used :-

\clubsuit Third Equation Of Motion Formula :

\mapsto \sf\boxed{\bold{\pink{v^2 =\: u^2 + 2as}}}

where,

  • v = Final Velocity
  • u = Initial Velocity
  • a = Acceleration
  • s = Distance Covered

Solution :-

First, we have to convert the initial velocity km/h into m/s :

\implies \sf Initial\: Velocity =\: 90\: km/h

\implies \sf Initial\: Velocity =\: 90 \times \dfrac{5}{18}\: m/s\: \: \bigg\lgroup \sf\bold{\pink{1\: km/h =\: \dfrac{5}{18}\: m/s}}\bigg\rgroup

\implies \sf Initial\: Velocity =\: \dfrac{450}{18}\: m/s

\implies \sf\bold{\purple{Initial\: Velocity =\: 25\: m/s}}

Now, we have to find the distance travelled by the train before it comes to rest :

Given :

  • Final Velocity (v) = 0 m/s
  • Initial Velocity (u) = 25 m/s
  • Acceleration (a) = - 0.5 m/

According to the question by using the formula we get,

\longrightarrow \sf (0)^2 =\: (25)^2 + 2(- 0.5) \times s

\longrightarrow \sf 0 \times 0 =\: 25 \times 25 + 2 \times \{- 0.5\} \times s

\longrightarrow \sf 0 =\: 625 + (- 1) \times s

\longrightarrow \sf 0 =\: 625 - 1s

\longrightarrow \sf 0 - 625 =\: - 1s

\longrightarrow \sf {\cancel{-}} 625 =\: {\cancel{-}} 1s

\longrightarrow \sf 625 =\: 1s

\longrightarrow \sf \dfrac{625}{1} =\: s

\longrightarrow \sf 625 =\: s

\longrightarrow \sf\bold{\red{s =\: 625\: m}}

{\footnotesize{\bold{\underline{\therefore\: The\: distance\: travelled\: by\: the\: train\: before\: it\: comes\: to\: rest\: is\: 625\: m\: .}}}}

Answered by Anonymous
47

Given :-

  • Speed of train = 90km/ph
  • Acceleration = -0.5 m/s-²

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

To Find :-

  • Distance covered = ?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution :-

We know that :

3rd equation of motion :

{\red{\bigstar \:  \:  \:  \: {\green{\underbrace{\underline{\orange{\bf{V² = U² + 2as}}}}}}}}

Here :

  • U = Initial velocity = 90km/ph
  • V = Final Velocity = 0m/s
  • A = Acceleration = -0.5 m/s-²
  • S = Distance covered = ?

Converting :

Speed :

{\mapsto{\sf{\cancel{90} \times  \frac{5}{\cancel{18}  }}}}

{\blue{\dashrightarrow{\sf{\underline{25 m/s}}}}}

Acceleration :

{\blue{\dashrightarrow{\sf{\underline{-0.5 m/s-²}}}}}

Solving starts :

{\mapsto{\bf{V² = U² + 2as}}}

{\twoheadrightarrow{\sf{(0)² = (25)² + 2 \times (-0.5)  \times s}}}

{\twoheadrightarrow{\sf{0 = 625 + (-1) \times s}}}</u></p><p><u>[tex]{\twoheadrightarrow{\sf{0 = 625 + (-1) \times s}}}

{\twoheadrightarrow{\sf{0 - 625 = -1s}}}

{\twoheadrightarrow{\sf{ {\cancel-} 625 ={\cancel -}1s}}}

{\twoheadrightarrow{\sf{S =  \frac{625}{1} }}}

{\green{➳{\orange{\boxed{\red{\bf{S = 625m}}}}}}}

Hence :

{\green{\orange{\underline{\boxed{\mathfrak{Distance Covered = 625 m}}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

More Info :

\begin{gathered}\red{\large \qquad \boxed{\boxed{\begin{array}{cc} \ ➳ \: \: \bf v = u + at \\ \\ \ ➳ \: \: \bf s = ut + \dfrac{1}{2}a {t}^{2} \\ \\ \ ➳ \: \: \bf{v}^{2} - {u}^{2} = 2as\end{array}}}}\end{gathered}

Similar questions