Physics, asked by devenkale4192, 1 year ago

A train travelling at 100 kmph overtakes a motorbike travelling at 64kmph in 40 sec. what is the length of the train in meter?

Answers

Answered by Muskan1101
18
When two object moves in same direction then their relative speed is their difference.

Since we know that,
speed =  \frac{distance}{time}
So,
 = >  (100 - 64) \times  \frac{5}{8} =  \frac{distance}{40}  \\  = > 36 \times  \frac{5}{8}  =    \frac{d}{40} \\  = >  10 =  \frac{d}{40}   \\
 =  > distance = 400m
Answered by hotelcalifornia
0

Given:

Velocity of the train =100kmph

Velocity of motorbike =64kmph

Time =40sec

To find:

Length of the train

Solution:

V_{train} =100 × \frac{5}{18}=27.8m/s

V_{bike} =64 × \frac{5}{18}=17.8m/s

It is given that train overtakes bike in 40 seconds. Since, both train and bike are moving in the same direction, We understand that since the speed of the train is greater hence, after 40 seconds, train will be ahead of the bike.

Now,

Relative velocity of bike with respect to the train,

V_{BT}=V_{T} -V_{B}

V_{BT}=27.8-(17.8)

V_{BT}=10m/s

In the beginning of the overtake, let's assume the engine of the train and motorbike are at same starting point.

Now, since the train has some extra velocity which is 10m/s which is the factor helping train to overtake the motorbike in the given time according to the question that is 40 sec.

The distance of the last compartment of the train from the bike is the length of the train.

Hence, distance covered by the distance covered by the last compartment of the train with 10m/s in 40sec is given by

d=s × t

d=10 × 40

d=400m

Final answer:

Hence, the length of the train is 400 m.

Similar questions