Physics, asked by indrajeet7621, 1 year ago

A train travelling at a speed of 72 km/h. The driver applies brakes so that a uniform acceleration of -0.2 m/s2 in produced.


tushaarcl: What do you need to find?

Answers

Answered by ankur275
0
given, v=0,u=72km/hr,and a= -0.2m/s^2
72km/hr={(72)(1000/3600)}m/s
=20m/s
v^2=u^2+2as
s=v^2-u^2/2a
s=o-(20)^2/ 2(-0.2)
s=-400/-0.4
s=4000/4
s=1000m.
s=1km
Answered by SparklingThunder
2

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

A train is travelling at a speed of 72 Km/h . The driver applies brakes so that a uniform acceleration of -0.2 ms^-2 is produced .Find the distance travelled by train before it comes to rest .

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

  • Distance travelled by train = 1 Km

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • Initial Velocity ( u ) = 72  \sf Km {h}^{ - 1}

  • Acceleration ( a ) = -0.2  \sf m {s}^{ - 2}

  • Final Velocity ( v ) = 0  \sf m {s}^{ - 1} ( At rest )

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  • Distance travelled by train ( s ) .

\green{ \large \underline{ \mathbb{\underline{ EQUATION\:  OF  \: MOTION \: USED : }}}}

 \purple{ \boxed{ \sf  {v}^{2} -  {u}^{2}  = 2as }}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

  \red{\textsf{ \underline{\underline{Converting initial velocity into SI unit : }}}}

To convert kilometre per hour into metre per hour , we multiply the value by 5/18 .

 \displaystyle \sf \longrightarrow u =  \bigg( 72 \times  \frac{5}{18} \bigg)m {s}^{ - 1}   \: \\  \\  \displaystyle \sf \longrightarrow u =  \bigg( 4 \times 5 \bigg)m {s}^{ - 1} \:  \:  \:  \:  \:  \:   \\  \\  \displaystyle \sf \longrightarrow u =  20 \: m {s}^{ - 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \red{\textsf{ \underline{\underline{Distance travelled by train ( s ) : }}}}

 \displaystyle \sf \longrightarrow  {v}^{2}  -  {u}^{2}   = 2as  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \displaystyle \sf \longrightarrow  {(0)}^{2}  -  {(20)}^{2}  = 2 \times ( - 0.2) \times s \:  \\  \\  \displaystyle \sf \longrightarrow  - 400 =  - 0.4s \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \displaystyle \sf \longrightarrow  - 0.4s =  - 400 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow s  = \frac{  \cancel{-} 400}{  \cancel{-} 0.4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \displaystyle \sf \longrightarrow s = 1000 \: m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow s = 1 \: Km \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple{ \boxed{ \begin{array}{l} \textsf{Distance travelled by train ( s ) = 1 Km}\end{array}}}

\green{ \large \underline{ \mathbb{\underline{KNOW\:MORE: }}}}

  • Acceleration

Acceleration is the rate at which velocity changes with time . Negative acceleration is called retardation .

  • Initial Velocity

Initial velocity is the velocity of the object before the effect of acceleration .

  • Final Velocity

Final velocity is the velocity of the object after the effect of acceleration .

  • Distance

Distance is the length of actual path covered by a moving object in a given time interval .

   \Large{\purple{\boxed{\begin{array}{l} \textsf{Equations of motion : } \\  \\  \textsf{v = u + at} \\  \\   \displaystyle\textsf{s = ut +  $ \sf\frac{1}{2}a {t}^{2} $ } \\  \\ \sf  {v}^{2} -  {u}^{2}  =  2as \end{array}}}}

Similar questions