Physics, asked by itdtuersjfsnnfs, 6 months ago

A train travelling at a speed of 75kmph. the brakes are applied so as to produce a uniform acceleration of -0.5m/s².find how far the train goes before it stops​

Answers

Answered by Anonymous
7

 \huge \sf {\orange {\underline {\pink{\underline{Solution :-}}}}}

Given :

Initial velocity, u = 75 km/h = 20.83 m/s²

Final velocity, v = 0

Uniform acceleration, a = -0.5 m/s²

To Find :

Distance covered, s =?

{\pink{\boxed{\large{\bold{Formula's}}}}}

Kinematic equations for uniformly accelerated motion .

\bf\:v=u+at

\bf\:s=ut+\frac{1}{2}at{}^{2}

\bf\:v{}^{2}=u{}^{2}+2as

and \bf\:s_{nth}=u+\frac{a}{2}(2n-1)

★We have to find the distance covered before it stops .

→By Equation of motion

\rm\:v{}^{2}=u{}^{2}+2as

\sf\implies\:0=(20.83)^{2}+2(-0.5)\times\:S

\sf\implies\:(20.83)^{2}=2\times0.5\times\:S

\sf\implies\:433.88=2\times0.5\times\:S

\sf\implies\:S=\dfrac{433.88}{2\times0.5}

\sf\implies\:S=\dfrac{43388\times10}{2\times5\times100}

\sf\implies\:S=\dfrac{43388}{2\times5\times10}

\sf\implies\:S=\dfrac{43388}{100}

\bf\implies\:S=433.88m

▬▬▬▬▬▬▬▬▬▬▬▬

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

Answered by Unknown1819
1

Given :

Initial velocity, u = 75 km/h = 20.83 m/s²

Final velocity, v = 0

Uniform acceleration, a = -0.5 m/s²

To Find :

Distance covered, s =?

{\pink{\boxed{\large{\bold{Formula's}}}}}

Formula

s

Kinematic equations for uniformly accelerated motion .

\bf\:v=u+atv=u+at

\bf\:s=ut+\frac{1}{2}at{}^{2}s=ut+

2

1

at

2

\bf\:v{}^{2}=u{}^{2}+2asv

2

=u

2

+2as

and \bf\:s_{nth}=u+\frac{a}{2}(2n-1)s

nth

=u+

2

a

(2n−1)

★We have to find the distance covered before it stops .

→By Equation of motion

\rm\:v{}^{2}=u{}^{2}+2asv

2

=u

2

+2as

\sf\implies\:0=(20.83)^{2}+2(-0.5)\times\:S⟹0=(20.83)

2

+2(−0.5)×S

\sf\implies\:(20.83)^{2}=2\times0.5\times\:S⟹(20.83)

2

=2×0.5×S

\sf\implies\:433.88=2\times0.5\times\:S⟹433.88=2×0.5×S

\sf\implies\:S=\dfrac{433.88}{2\times0.5}⟹S=

2×0.5

433.88

\sf\implies\:S=\dfrac{43388\times10}{2\times5\times100}⟹S=

2×5×100

43388×10

\sf\implies\:S=\dfrac{43388}{2\times5\times10}⟹S=

2×5×10

43388

\sf\implies\:S=\dfrac{43388}{100}⟹S=

100

43388

\bf\implies\:S=433.88m⟹S=433.88m

▬▬▬▬▬▬▬▬▬▬▬▬

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

HOPEHELPSUH:)

Similar questions