A train travelling at a speed of 75kmph. the brakes are applied so as to produce a uniform acceleration of -0.5m/s².find how far the train goes before it stops
Answers
Given :
Initial velocity, u = 75 km/h = 20.83 m/s²
Final velocity, v = 0
Uniform acceleration, a = -0.5 m/s²
To Find :
Distance covered, s =?
Kinematic equations for uniformly accelerated motion .
and
★We have to find the distance covered before it stops .
→By Equation of motion
▬▬▬▬▬▬▬▬▬▬▬▬
Given :
Initial velocity, u = 75 km/h = 20.83 m/s²
Final velocity, v = 0
Uniform acceleration, a = -0.5 m/s²
To Find :
Distance covered, s =?
{\pink{\boxed{\large{\bold{Formula's}}}}}
Formula
′
s
Kinematic equations for uniformly accelerated motion .
\bf\:v=u+atv=u+at
\bf\:s=ut+\frac{1}{2}at{}^{2}s=ut+
2
1
at
2
\bf\:v{}^{2}=u{}^{2}+2asv
2
=u
2
+2as
and \bf\:s_{nth}=u+\frac{a}{2}(2n-1)s
nth
=u+
2
a
(2n−1)
★We have to find the distance covered before it stops .
→By Equation of motion
\rm\:v{}^{2}=u{}^{2}+2asv
2
=u
2
+2as
\sf\implies\:0=(20.83)^{2}+2(-0.5)\times\:S⟹0=(20.83)
2
+2(−0.5)×S
\sf\implies\:(20.83)^{2}=2\times0.5\times\:S⟹(20.83)
2
=2×0.5×S
\sf\implies\:433.88=2\times0.5\times\:S⟹433.88=2×0.5×S
\sf\implies\:S=\dfrac{433.88}{2\times0.5}⟹S=
2×0.5
433.88
\sf\implies\:S=\dfrac{43388\times10}{2\times5\times100}⟹S=
2×5×100
43388×10
\sf\implies\:S=\dfrac{43388}{2\times5\times10}⟹S=
2×5×10
43388
\sf\implies\:S=\dfrac{43388}{100}⟹S=
100
43388
\bf\implies\:S=433.88m⟹S=433.88m
▬▬▬▬▬▬▬▬▬▬▬▬
{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}
HOPEHELPSUH:)