Math, asked by saikolupoti, 1 year ago

A train travelling @66.6 km/hr passes a pole in 9 seconds and platform in 29 seconds what is the length of the platform

Answers

Answered by Avengers00
19
\underline{\underline{\Huge{\textbf{Solution:}}}}

\sf\textsf{Given,}
\sf\textsf{Speed of the train = 66.6 kmph}
\sf\textsf{time taken by the train to cross the pole = 9 s}
\sf\textsf{time taken by the train to cross the platform = 29 s}
\sf\textsf{Length of the Platform = ?}

\underline{\Large{\textsf{Step-1:}}}
\sf\textsf{Express the Speed of the train in mps}

\sf\textsf{We have,}
\bigstar \quad\: \boxed{\mathbf{1 \: kmph =\dfrac{5}{18} \: mps}}

\implies \sf\textsf{Speed of the train = 66.6$\times\dfrac{5}{18}$ mps}

\implies \sf\textsf{Speed of the train = 11.1$\times\dfrac{5}{3}$ mps}

\implies \sf\textsf{Speed of the train =$\dfrac{55.5}{3}$}

\implies \sf\textsf{Speed of the train =$\dfrac{555}{30}$}

\implies \sf\textsf{Speed of the train =$\dfrac{37}{2}$ mps}

\therefore\: \sf\textsf{Speed of the train =18.5 mps}

\\

\underline{\Large{\textsf{Step-2:}}}
\sf\textsf{Assume a variable for the Distance covered by the train in passing the Pole}

\sf\textsf{Let Distance covered by the train in passing the Pole be $d_{1}$ m}

\\

\underline{\Large{\textsf{Step-3:}}}
\sf\textsf{Assume a variable for the Distance covered by the train in passing the Platform}

\sf\textsf{Let Distance covered by the train in passing the Platform be $d_{2}$ m}

\\

\underline{\Large{\textsf{Step-4:}}}
\sf\textsf{Find the Length of the train}

\sf\textsf{Length of the train is equal to}\\\sf\textsf{the Distance covered by the train in passing the Pole,}\\ \sf\textsf{assuming that the width of the pole is negligible}

\sf\textsf{We have,}
\bigstar \quad\: \boxed{\mathbf{Speed = \dfrac{Distance\: Covered}{time}}}

\sf\textsf{Substituting Values}

\implies \sf\textsf{18.5 = $ \dfrac{d_{1}}{9}$}

\implies \sf\textsf{$d_{1}$ = 18.5$\times$ 9}

\implies \sf\textsf{$d_{1}$ = 166.5 m}

\therefore\: \sf\textsf{Length of the train = 166.5 m}

\\

\underline{\Large{\textsf{Step-5:}}}
\sf\textsf{Find the Distance covered by the train in passing the Platform}

\sf\textsf{Distance covered by the train in passing the platform is sum of the lengths of train and Platform}

\sf\textsf{From [1]}

\sf\textsf{Substituting Values}

\implies \sf\textsf{18.5 = $ \dfrac{d_{2}}{9}$}

\implies \sf\textsf{$d_{2}$ = 18.5$\times$ 29}

\implies \sf\textsf{$d_{2}$ = 536.5 m}

\\

\underline{\Large{\textsf{Step-6:}}}
\sf\textsf{Find the length of the Platform}

\sf\textsf{Subtracting the Length of the train}\\ \sf\textsf{from the Distance covered by the train}\\ \sf\textsf{in passing the platform gives Length of Platform}

\implies \sf\textsf{Length of the Platform = $d_{2}-d{1}$}

\sf\textsf{Substituting Values}

\implies \sf\textsf{Length of the Platform = 536.5 - 166.5}

\implies \sf\textsf{Length of the Platform = 370 m}

\therefore
\blacksquare\quad \textsf{The Length of the Platform = \underline{\Large{\textbf{370\: m}}}}

Avengers00: thank you ((:.
Similar questions