Math, asked by divgaichor, 11 months ago

A train travels 360km/hr with uniform speed.The speed of the train is increased by 5km/hr,it takes 48 minutes less to cover the same distance.Find the initial speed of the train.​

Answers

Answered by pwdsmeena
4

Answer:

Step-by-step explanation:

let initial speed = x km/h

since Speed = distance / time

then time = distance /speed

                = 360/x

if speed is increased

new speed = x+5 km/h

new time = 360/x+5

new time - old time = 48 minutes = 48/60

= 360/x+5  -  360/x  = 48/60

now i have given you equation please solve accordingly

Good day!

Answered by Anonymous
5

\bf{\Huge{\boxed{\sf{\green{ANSWER\::}}}}}}

\bf{\Large{\underline{\Rm{Given\::}}}}}

A train travels 360km/hr with uniform speed. The speed of the train is increased by 5km/hr, it takes 48 minutes less to cover the same distance.

\bf{\Large{\underline{\rm{To\:find\::}}}}}}

The initial speed of the train.

\bf{\Large{\underline{\sf{\pink{Explanation\::}}}}}}

Let the Initial speed of the train be R km/hr.

\bf{We\:have}\begin{cases}\sf{Distance\:=\:360km/hr}\\ \sf{Speed\:=\:R\:km/hr}\end{cases}}

We know that Formula of time;

\leadsto\tt{\orange{Time\:=\:\frac{Distance}{Speed} }}

Therefore,

\longmapsto\sf{Time\:to\:travel\:360km=\frac{360}{R} hr}}

\longmapsto\sf{Time\:with\:increase\:speed\:(R+5)=\frac{360}{R+5} hr}

\longmapsto\sf{48\:minutes\:convert\:hour\:=\:0.8hr.}

A/q

\mapsto\tt{\frac{360}{R} -\frac{360}{R+5} =0.8}

\mapsto\tt{\frac{360(R+5)-360(R)}{R(R+5)} =0.8}

\mapsto\tt{\frac{360(R+5-R)}{R(R+5)} =0.8}

\mapsto\tt{\frac{360(\cancel{R}+5\cancel{-R})}{R(R+5)} =0.8}

\mapsto\tt{\frac{1800}{R^{2}+5R } =\frac{8}{10} }

\mapsto\tt{1800*10=8(R^{2} +5R)}

\mapsto\tt{18000=8R^{2} +40R}

\mapsto\tt{8R^{2} +40R-18000=0}

\mapsto\tt{8(R^{2} +5R-2250)=0}

\mapsto\tt{R^{2} +5R-2250=\cancel{\frac{0}{8}} }

\mapsto\tt{R^{2} +5R-2250=\cancel{\frac{0}{8}} }

\mapsto\tt{R^{2} +5R-2250=0}

Using Sridharacharya Formula:

\mapsto\tt{x\:=\:\frac{-b  ± \sqrt{b^{2} -4ac} }{2a} }

  • A = 1
  • B = 5
  • C = -2250

So,

\mapsto\tt{x=\frac{-5±\sqrt{5^{2}-4*1*-2250 } }{2*1} }

\mapsto\tt{x=\frac{-5±   \sqrt{25+9000} }{2} }

\mapsto\tt{x=\frac{-5±  95}{2} }

Now,

\leadsto\rm{x\:=\:\frac{-5+95}{2} \:\:\;\:\;\:\:or\:\:\:\;\:x=\frac{-5-95}{2} }

\leadsto\rm{x\:=\:\cancel{\frac{90}{2}} \:\:\:\:\:\:\:\;or\:\:\:\:\:\:\:x=\cancel{\frac{-100}{2}} }

\leadsto\rm{\red{x\:=\:45\:\:\;\:\:\:or\:\:\:\:\:x=-50}}

We know that negative value is not acceptable.

Thus,

\bf{\large{\boxed{\rm{\orange{The\:initial\:speed\:of\:the\:train\:is\:45km/hr.}}}}}}

Similar questions