English, asked by Bhavyagowdabhavya, 3 months ago

A train travels at a certain average speed for a distance of 63 km and then travels at a
distance of 72 km at an average speed of 6 km/hr more than its original speed. If it
takes 3 hours to complete total journey, what is the original average speed ?

Answers

Answered by WildCat7083
9

\huge\ \pmb{ \red{«\: คꈤ \mathfrak Sฬєя \: » }}

Let the original speed of train is x km/h

Time taken to cover 63 km with speed x km/h,

\bold{T_1 =  \frac{distance}{time}}  \\  \\     \bold{T_1 =\frac{63}{x} hours}

Again, question said , speed of train now (x + 6) km/h

Time taken to cover 72km with speed (x + 6) km/h ,

 \bold{T_2=  \frac{72}{(x + 6)} \:  km/h }

Acc to question

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: T_1+T_2 = 3  \: hours  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:⇒ \frac{63}{x}  +  \frac{72}{(x + 6)}  = 3  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:⇒  \frac{21}{x}  +  \frac{24}{(x + 6)}= 1  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:⇒ (21x + 126 + 24x) = \frac{x}{(x + 6)} \\  \\\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ⇒45x + 126 = x² + 6x  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:⇒ x² - 39x - 126 = 0  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:⇒x² - 42x + 3x - 126 = 0 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:⇒ x(x - 42) + 3(x - 42) = 0 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:⇒(x + 3)(x - 42) = 0

∴x = 42 and -3 , but x ≠ -3 ∵ speed doesn't negative

Hence, original speed of train = 42 km/h

\:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge \bold{@WildCat7083 } \\

Similar questions