Physics, asked by jatin6934, 1 year ago

A train travels some distance with a speed of 30 kilometre per hour and returns with a speed of 45 kilometre per hour calculate the average speed of the train​

Answers

Answered by Anonymous
16
\sf{\underline{Solution:}}

Let the distance covered by the train be \boxed{\sf{\frac{x}{2}}}

\sf{\underline{That\:in\:the\:case\:of:}}

Speed of 30 km/h in \boxed{\sf{y_{1}} } hours.

\sf{\underline{So:}}

\boxed{\sf{y_{1} = \frac{x}{2\times30}}}

\boxed{\sf{y_{1} = \frac{x}{60}}}

\sf{\underline{We\:know\:that:}}

It covers \boxed{\sf{ \frac{x}{2}}} distance,

\sf{\underline{That\:in\:the\:case\:of:}}

Speed of 45 km/h in \boxed{\sf{y_{2}}} hours.

\sf{\underline{So:}}

\boxed{\sf{y_{2} = \frac{x}{2\times45}}}

\boxed{\sf{y_{2} = \frac{x}{90}}}

\sf{\underline{Now:}}

Total time taken is: \boxed{\sf{(y_{1}+y_{2})}}

\sf{\underline{We\:know\:that:}}

\boxed{\sf{Average \: speed = \frac{Total \: distance}{Total \: time} }}

\implies  \sf{ \frac{x}{(y_{1} + y_{2} )}}

\implies \sf{ \frac{1}{( \frac{1}{60} + \frac{1}{90}) }}

\implies \sf{ \frac{1}{ \frac{(3 + 2)}{180} }}

\implies  \sf{ \frac{1}{ \frac{5}{180}} }

\implies \sf{ \frac{180}{5}}

\implies \boxed{\sf{ 36 \: km/h}}

\sf{\underline{Therefore:}}

The average speed of the train is \sf{36 \: km/h.}

Goldensister: no it. is. not a perfect anzwer
Answered by kirangawle2
0

Answer:

x upon 2

Explanation:

Similar questions