Physics, asked by BrainlyHelper, 1 year ago

A transparent paper (refractive index = 1⋅45) of thickness 0⋅02 mm is pasted on one of the slits of a Young’s double slit experiment which uses monochromatic light of wavelength 620 nm. How many fringes will cross through the centre if the paper is removed?

Answers

Answered by prmkulk1978
4

Answer:

14.5 fringes will cross through the centre if the paper is removed.

Explanation:

Given :

refractive index of  transparent paper =μ= 1⋅45

thickness=t= 0⋅02 mm =0.02x10⁻³m

wavelength =λ=620 nm=620 x10⁻⁹ m

We know that when we paste a transparent paper in front of one of the slits, then the optical path changes by =(μ-1)t.

And optical path should be changed by λ for the shift of one fringe.

∴ Number of fringes crossing through the centre is

n=(μ-1)t/λ

=(1.45-1)x0.02×10⁻³ / 620×10⁻⁹  

=14.5

14.5 fringes will cross through the centre if the paper is removed.

Answered by Niranjan7262
1

Answer:

we will have a good day and I'll send you a good day at work now finished by arshikesh I will be able I will follow follow up with you

Similar questions